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Abstract: Mixed sensitivity design of a linear multivariable control system amounts to 
shaping its sensitivity functions to achieve the design targets of closed-loop system per-
formance and robustness. Both H∞  and 2H  optimization may be used to this end. 
Various tools are available, in particular low and high frequency shaping, and partial 
pole assignment. The paper describes a technique to help placing the dominant closed-
loop poles called disturbance modeling. Copyright © 2002 IFAC 
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1. INTRODUCTION 

The mixed sensitivity approach to the design of lin-
ear multivariable control systems was first introduced 
in the context of H∞  optimization (Verma and 
Jonckheere, 1984; Kwakernaak, 1983). It allows 
shaping the sensitivity function and the complemen-
tary sensitivity function of the closed-loop system to 
achieve design targets compatible with good per-
formance and robustness. The present paper reviews 
the various features of the H∞  design approach, in 
particular, low and high frequency shaping, and par-
tial pole placement. It is also explained how distur-
bance modeling may be used to place the dominant 
closed-loop poles in a systematic way. 

The best-known instance of the 2H  version of the 
mixed sensitivity problem is the LQG problem. This 
has of course been very thoroughly investigated and 
is documented in many textbooks. LTR, or Loop 
Transfer Recovery, is a specialized application of 
LQG that aims at recovering the favorable features of 
full state feedback. We explore in the present paper 
how the low and high frequency shaping techniques 
developed for the H∞  mixed sensitivity approach 
may also be used in the 2H  case. Also disturbance 
modeling for dominant pole placement may be ap-
plied in an LTR-like context. 

The H∞  and 2H  mixed sensitivity problems that we 
discuss are all special cases of the standard H∞  and 

2H  problems. The actual algorithm that is used to 
solve the problems is more or less incidental. The 
famous two Riccati equation algorithm for the stan-
dard H∞  problem (Glover et al., 1989) is widely 
implemented but suffers from some limitations: cer-
tain stabilizability and detectability conditions need 
to be satisfied, the algorithm cannot handle mixed 

sensitivity problems with non-proper weighting func-
tions, and only sub-optimal as opposed to optimal 
solutions are obtained. Algorithms based on polyno-
mial matrix fraction representations (Kwakernaak, 
1996) or descriptor representations of the generalized 
plant (Kwakernaak, 1998) can deal with more gen-
eral problems but no fully reliable implementations 
are available at this time. For this reason, the paper 
describes how block diagram substitution may be 
used to circumvent the limitations of the two Riccati 
equation solution. 

In an earlier paper (Kwakernaak, 2000) polynomial 
matrix and descriptor algorithms for the solution of a 
quite general version of the standard 2H  problem are 
developed. By block diagram substitution many 2H  
optimization problems may be reduced to standard 
LQG problems, however. 

2. FREQUENCY DOMAIN DESIGN TARGETS 

We discuss the design of multivariable feedback 
systems as in the block diagram of Fig. 1. The plant 
is represented by its transfer matrix P, and the com-
pensator by its transfer matrix K. The signal v repre-
sents the disturbances, and w the measurement noise. 
Throughout, P is assumed to be square, rational and 
invertible. 

 
Fig. 1 Two-degree-of-freedom feedback system 

Performance and robustness are characterized by 
various well-known closed-loop functions, in particu-
lar the sensitivity function S, the complementary 
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sensitivity function T, and the input sensitivity func-
tion U, successively defined by 
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S is the transfer matrix from the disturbance input v 
to the control system output z, T is its complement 
T I S= − , and −U is the transfer matrix from the 
disturbance v to the plant input u. 

Control system design amounts to shaping S, T and U 
(Kwakernaak, 1995). These are the requirements for 
performance: 

For good disturbance attenuation the sensitivity S 
should be small over a suitable low frequency band. 
This is achieved by making the loop gain L PK=  
large in this frequency band. We say that L is large at 
a frequency ω  if ( ) 1L jω �  for a suitable norm. 
Typically the 2-norm is used, that is, the largest sin-
gular value.  

Zero frequency disturbance rejection and, corre-
spondingly, very good low frequency disturbance 
attenuation is obtained by integral action, that is, 
setting (0) 0S =  by letting 1(0) 0L− = . 

To prevent overly large inputs and to reduce the 
effect of measurement noise the complementary 
sensitivity T should drop off to 0 as quickly as possi-
ble outside the active frequency band. This is accom-
plished by letting the loop gain L drop off as quickly 
as possible. 

In the cross-over region, that is, the frequency region 
where the loop gain L changes over from being large 
to being small, both S and T should be prevented 
from peaking. Peaking implies a poorly damped time 
response. 

These requirements are also needed for good robust-
ness: 

Small values of S in a low frequency band resulting 
from large values of the gain L imply good robust-
ness with respect to low frequency plant perturba-
tions such as caused by parameter uncertainty. 

Small values of T at frequencies outside the active 
band (corresponding to small values of the loop gain 
L) imply robustness against high frequency perturba-
tions caused by modeling errors and parasitic effects. 

If neither S nor T exhibits excessive peaking in the 
crossover region then adequate stability robustness is 
guaranteed. 

Fig. 2 shows “ideal” shapes for the norms of the 
sensitivity functions. The specifications of what an 
acceptable shape is involve notions such as band-
width, peaking, roll-on and roll-off. 

In this paper we explore how H∞  and 2H  mixed 
sensitivity design may be used to achieve these de-
sign targets. 

 

Fig. 2  Ideal shapes for the sensitivity functions 

3. EXPLORATORY ANALYSIS 

It goes almost without saying that the design targets 
need to be realistic. To establish whether they are, 
exploratory analysis of the plant is called for.  

In particular, there are some essential design limita-
tions related to the locations of the open-loop plant 
poles and zeros. 

If the plant has right-half plane open-loop zeros then 
the magnitude of the smallest right-half plane zero is 
an upper bound for the closed-loop bandwidth. This 
is because good performance basically involves in-
version of the plant. Since a right-half plane zero 
implies instability of the inverse plant this inversion 
may only be accomplished for low frequencies that 
are smaller than the magnitude of the smallest right-
half plane open-loop zero. This provides an upper 
bound to the width of the band over which S may be 
made small. 

If the plant has right-half plane poles then the gain 
may only be allowed to drop off for frequencies 
greater than the magnitude of the largest right-half 
plane pole. Otherwise the plant cannot be stabilized. 
This constitutes a lower bound for the frequency 
band outside which T drops off to small values. 

If the frequency bound that follows from by (a) is 
less than that follows from (b) then the crossover 
region necessarily occupies the entire intervening 
interval. This does not bode well for robustness. 

The bandwidth specification obviously needs to re-
spect the limitations imposed by right-half plane 
poles and zeros. If it does, it needs to be checked 
whether the required bandwidth matches the physical 
capacity of the plant, that is, its ability to absorb 
sufficiently large inputs. This may be investigated 
with the help of the input sensitivity U. If the loop 
gain L is large then 1 1( )U C I PC P− −= + ≈ . Thus, 
prior to choosing the compensator C the behavior of 
U over the target low frequency band may be as-



 

sessed by checking the behavior of 1P−  over this 
band. 

4. H∞ MIXED SENSITIVITY DESIGN 

Mixed sensitivity 

Mixed sensitivity design relies on optimization of a 
criterion that involves two or more sensitivity func-
tions. It first arose in the context of H∞  optimization 
(Kwakernaak, 1983; Verma and Jonckheere, 1984). 
The standard H∞  mixed sensitivity minimization 
criterion is 

 1
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The less general criterion where V I= , which is 
often seen in the literature, has serious limitations. 
The more general criterion where the single right-
hand factor V  in (2) is replaced with two different 
factors 1V  and 2V  is a little too unstructured for 
analysis. Since the sensitivity functions T and U are 
related by T PU=  the sensitivity function U in the 
second entry may be replaced with T by suitably 
modifying 2W , if desired.  

 

Fig. 3 Mixed sensitivity configuration 

The formulation with U allows the block diagram 
representation of Fig. 3. In this diagram, the closed-
loop transfer matrix from the disturbance driving 
signal v to the output 
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Thus, mixed sensitivity optimization amounts to 
minimization of the H∞ -norm of the closed-loop 
transfer matrix H. 

Dominant pole assignment 

Assume that the plant transfer matrix P has the left 
polynomial fraction representation 1P D N−=  with 

D row-reduced. Then for design purposes it is very 
effective to choose the rational matrix V as 

1V D M−=  

The polynomial matrix M is so selected that V is 
biproper. For reasons of dimensioning and scaling it 
is helpful to let ( )V I∞ = . Without loss of generality 
the square polynomial matrix M may be chosen to 
have all its roots in the left-half complex plane. 

With this choice of V the solution of the H∞  prob-
lem often (but not always) has the property that the 
roots of the polynomial matrix M are among the 
closed-loop poles. This is a consequence of the 
equalizing property of type B solutions of the H∞  
problem (Kwakernaak, 1996). Type B solutions gen-
erally seem to occur in the mixed sensitivity problem 
when the weight 2W  is small. This is exactly what is 
needed to make the roots of M the dominant poles. 

The roots of D are the open-loop plant poles. Assum-
ing that V is biproper, the roots of M generally are 
closed-loop poles of the mixed-sensitivity optimal 
control system. Hence, the open-loop poles are reas-
signed to the locations of the roots of M. This is 
called partial pole assignment — partial because 
there are other closed-loop poles besides the roots of 
M alone. By making sure that these pre-assigned 
poles are the dominant closed-loop poles an impor-
tant degree of control over the closed-loop behavior 
is available. 

Low  and high frequency shaping 

Another feature of the mixed sensitivity method 
consists of the possibilities it offers for low  and high 
frequency shaping. 

We first consider low frequency shaping. Suppose 
that V is so chosen that 

0( ) /    for   0V s V s s≈ →  

with 0V  nonsingular finite, while also 1(0)W  is non-
singular finite. Then if the mixed sensitivity problem 
has at all a solution inspection of (2) shows that if the 
H∞ -norm is finite then necessarily 0( )S s sS≈  for 

0s → , with oS  some constant matrix. This implies 
(0) 0S = and, hence, integral control, which guaran-

tees low sensitivity at low frequencies. 

Note this: If 0( )S s sS≈  for 0s →  then ( )T s I≈  so 
that  

1
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Therefore, if the criterion (2) is to be finite then 
1

2 ( ) ( )W s P s−  needs to contain a factor s. If 1( )P s−  



  

does not have this factor s then 2 ( )W s  needs to be 
chosen so that this factor is present. 

Another way to design for integral control is to let 
the weighting function 1W  have a factor 1/ s . In this 
case it is not necessary to let 2W  have a factor s. 

High frequency shaping is used for U. Inspection of 
the expressions 

1 1( ) , ( )U C I PC T PC I PC− −= + = +  

shows that if the loop gain L PC=  is strictly proper 
— which is a very sensible design requirement — 
then for high frequencies U C≈ . Hence, C inherits 
the high frequency roll-off characteristics of U. Since 
for high frequencies T PC≈  the roll-off characteris-
tics of T follow from those of P and C. 

To illustrate high frequency shaping suppose that 
2 2( ) kW s W s∞≈  for s → ∞ . Since by assumption V 

is biproper necessarily ( ) kU s U s−
∞≈  for s → ∞  if 

the criterion (2) is finite. Thus, high frequency roll-
off may be controlled by an appropriate choice of 

2W . Adequate high frequency roll-off is important to 
ensure high frequency robustness, to reduce the ef-
fect of measurement noise, and to eliminate unneces-
sary high frequency activity of the plant input. 

Transformation by block diagram substitution 

Including a factor 1/ s  in V or 1W  as proposed in the 
preceding section makes the generalized plant for the 
resulting H∞  problem non-stabilizable. This is a 
serious handicap for the use of standard state space 
algorithms for the solution of the H∞  problem. 

Also, modifying the weighting function 2W  for high 
frequency shaping easily leads to a non-proper trans-
fer function for 2W . Since such a transfer function 
cannot be represented in state form, again the stan-
dard state space algorithms for the solution of the 
H∞  problem cannot be used.  

Both these difficulties may be resolved by block 
diagram substitution (Krause, 1992). By way of ex-
ample, consider the case that 1W  has a pole at 0, 
corresponding to a non-stabilizable mode. The con-
figuration of Fig. 1 may be modified to that of Fig. 4.  
Because the uncontrollable block 1W  is now inside 
the loop the controllability problem has been re-
moved. Once the compensator oK  that solves the 
modified mixed-sensitivity problem has been found, 
the compensator K for the original problem follows 
as 1oK K W= . A disadvantage of this approach is that 
there usually are cancellations between the factors 

oK  and 1W , which is numerically unattractive. 

 

 

Fig. 4 Modified mixed sensitivity configuration 

We see from Fig. 4 that by this substitution the plant 
transfer function has been modified from P  to 1W P . 
If 1W  has a factor 1/ s then so does the modified 
plant. This well-known device to obtain integrating 
action is sometimes called the integrator-in-the loop 
method. 

If 2W  is nonproper then block diagram substitution is 
used to pull 1

2W −  inside the loop. 

Loop shaping by disturbance modeling 

In an earlier subsection we propose to design the 
dominant closed-loop dynamics by suitably choosing 
the weighting matrix V. Since in the MIMO case it is 
not clear at all how to choose V we outline a way do 
this by what we call disturbance modeling. 

Suppose that the plant P, possibly modified by block 
diagram substitution as previously explained, is de-
scribed in state space form as 

x Ax Bu= +� , y Cx= . 

We now model the effect of the disturbances by 
modifying the system equations to 
 x Ax Bu Gv= + +� , y Cx w= +   (4) 

The disturbance has the components v and w. The 
assumption is that G may be sensibly chosen by de-
sign considerations. In this model, the transfer matrix 
from the disturbances to the plant output is 

1( ) ( )V s C sI A G I− = −   

This transfer function generally is not square. Con-
sideration of the H∞  mixed sensitivity criterion, 
however, shows that V may be replaced with V , 
which is obtained by spectral co-factorization of 

( ) ( )TV s V s− , that is, ( ) ( ) ( ) ( )T TV s V s V s V s− = −  
such that V  is square and has all its poles and zeros 
in the closed left-half plane (Kwakernaak, 1986). 

Thus, the approach we propose is to choose the gain 
G such that the zeros of V  – meant to be the domi-
nant closed-loop poles – assume suitable locations. 
The design application in the companion paper 
(Kwakernaak, 2001) illustrates the procedure. 



 

It is not really necessary to compute the spectral 
factor V  because the standard state space H∞  algo-
rithm accommodates the equations (4). 

5. 2H  MIXED SENSITIVITY DESIGN 

LQG and LTR 

The best-known 2H  optimization problem is of 
course the LQG problem. Fig. 5 shows the configura-
tion. The compensator K is the interconnection of an 
optimal observer (Kalman filter) and state feedback. 
The system is driven by the white system noise v and 
the white measurement noise w. 

A simple computation (see further on) shows that the 
LQG problem amounts to an 2H  problem. That is, 
solving the 2H  problem is equivalent to minimizing 
the 2H -norm of a transfer function that involves 
various sensitivity functions. It is not exactly the 

2H -norm of an expression such as (3) because the 
configuration of Fig. 5 involves measurement noise, 
which the configuration of Fig. 3 does not. 

 

Fig. 5  LQG configuration 

The LQG problem has been very extensively investi-
gated, which facilitates its application. A special case 
is the situation where Loop Transfer Recovery (LTR) 
may be applied. We briefly review the main results. 

In the LGQ problem the plant, including system and 
measurement noise, are represented in state form as 
 , ,x Ax Bu Gv z Dx y Cx w= + + = = +�  (5) 

The white system noise v has intensity V and the 
white measurement noise w has intensity W. The 
optimization criterion is 

 ( )lim ( ) ( ) ( ) ( )T T
t

E z t Qz t u t Ru t
→∞

+  (6) 

The solution relies on solving two algebraic Riccati 
equations. It is documented in many textbooks, in-
cluding Kwakernaak and Sivan (1972). 

LTR (Saberi et al., 1993) relies on the assumption 
that ( )P s =  1( )C sI A B−−  is square and has no right 
half plane zeros. There are two approaches. The first 
approach is to assume that the system noise v is addi-
tive to the input, that is, G B= . Then if the intensity 
W of the measurement noise approaches the zero 

matrix. the loop gain of the closed-loop system ap-
proaches the loop gain of the system under state 
feedback (assuming that in Fig. 5 the loop is opened 
at the plant input.) The loop gain under state feed-
back has various favorable properties. In particular it 
has guaranteed robustness margins.  

The dual approach is to assume non-inferential con-
trol, that is, D C= , and to let the weighting matrix R 
approach the zero matrix. Again robustness margins 
may be guaranteed. 

The LTR approach is subject to criticism but it is 
transparent. Also, it accommodates the design targets 
small sensitivity at low frequencies, small comple-
mentary sensitivity at high frequencies, and little 
peaking at crossover frequencies. 

LQG as a mixed sensitivity problem  

We show that LQG optimization is a mixed sensitiv-
ity problem. Under the simplifying assumptions 
G B= , D C=  we have the block diagram of Fig. 5 

( )y z P u v= = + . It is easily found that in the closed 
loop ,z SPv Tw u UPv Uw= − = − − . The sensitivity 
functions S, T, and U are given by (1). It follows that 
the LQG criterion (6) may be rendered as 

( )~ ~ ~ ~ ~tr SPVP S TWT UPVP U UWU df
∞
−∞

+ + +∫ ∼  

The argument of the integrand is 2 fπ  throughout, 
and we denote ( ) ( )TS s S s= −∼ , etc. Inspection of 
this expression shows that its minimization definitely 
deserves to be called a mixed sensitivity problem. 

We may generalize this mixed sensitivity problem by 
introducing weighting and shaping filters as in Fig. 6. 
Correspondingly, the generalized criterion is 

~ ~ ~ ~ ~ ~
1 1 1 1 1 2 2 1

~ ~ ~ ~ ~ ~ ~
2 1 1 2 2 2 2 2

tr (

)

W SPV V P S W W TV V T W

W UPV V P U W W UV V U W df

∞
−∞

+ +

+

∫ ∼
 (7) 

 

 

Fig. 6. Block diagram for the 2H  mixed sensitivity 
problem 



  

Low and high frequency shaping 

The various weighting functions that have been in-
troduced may be used for low  and high frequency 
shaping. The techniques introduced in the H∞  sec-
tion to design for integrating action also work here.  

For high frequency shaping it is important to recog-
nize that if the 2H  mixed sensitivity problem has a 
solution then each of the terms in the integrand of (7) 
is strictly proper. One consequence of this is that in 
the standard LQG problem the compensator is always 
strictly proper and, hence, also U and T. If for high 
frequency robustness T needs to have more high 
frequency roll-off than 1 decade/decade then the 
weighting function 2W  may be selected nonproper to 
achieve this. 

Dominant pole assignment by disturbance modeling 

The dominant pole assignment technique proposed 
for the H∞  mixed sensitivity problem may also be 
applied to the 2H  mixed sensitivity approach. Again 
it relies on disturbance modeling. In this method, the 
gain matrix G for the noise in the state equation (5) is 
so chosen that only those modes are excited that 
correspond to poles that need to be moved. The 
amount of excitation determines the extent to which 
the poles are relocated. 

The approach relies on making the observer poles the 
dominant closed-loop. The regulator poles are ren-
dered non-dominant by choosing the weighting ma-
trix R sufficiently small. Hence, the approach 
amounts to dual LTR 

The design application in the companion paper 
(Kwakernaak, 2001) illustrates the method. 

6. CONCLUSIONS 

The low and high frequency shaping and disturbance 
modeling tools of the H∞  and 2H  mixed sensitivity 
methods presented in this paper aim at shaping the 
closed-loop sensitivity functions to achieve generic 
performance and robustness qualities. The dominant 
pole placement feature moreover allows control over 
the time domain response properties. 

In the companion paper (Kwakernaak, 2001) the two 
methods are applied to a concrete multivariable de-
sign problem. 
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