
EXECUTION LEVEL CONTROL AND RECONFIGURATION FOR
REMOTELY OPERATED VEHICLES

G. Bruzzone, M. Caccia, P. Coletta, and G. Veruggio

Consiglio Nazionale delle Ricerche - Istituto Automazione Navale
Via De Marini, 6 - 16149 Genova – Italy
{gabry,max,paolo,gian}@ian.ge.cnr.it

Abstract: A method to design the control architecture for Remotely Operated Vehicles is
presented that is based on the idea to use the Petri net formalism. The “safe” behaviour of
the architecture is guaranteed by enforcing some place invariants on the marking of the
net. An algorithm to find out feasible sequences of operations to switch between
configurations is introduced. Finally, a method to automatically reconfigure the system is
shown. Copyright © 2002 IFAC

Keywords: Petri-nets, control system design, autonomous mobile robots.

1. INTRODUCTION

The increasing demand of highly sophisticated
controllers able to achieve high performances in
uncertain and adverse conditions has led to the
development of intelligent control systems,
characterized by three level hierarchical functional
architectures (Antsaklis and Passino, 1993; Valavanis
and Saridis, 1992). Asynchronous decisions about the
proper tasks required to accomplish the current
mission are made by the upper organization and
coordination levels, while the execution level embeds
a library of synchronous/continuous-state functions
with real-time motion estimation and control abilities.
Thus, an interface is required, which represents the
underlying execution level as a discrete event system,
generating events from the continuous state domain to
the discrete-state domain and mapping symbols in the
opposite versus. The interface guarantees the correct
behaviour of the execution level, checking that no
forbidden state is reached and that the proper task
activation and deactivation order is respected. A
thorough discussion on architectures for hybrid
control and autonomous systems can be found in
(Fierro and Lewis, 1997) and (Alami, et al., 1998). In
this framework, the research presented in the
following focuses on the control of the execution of
synchronous/continuous-time functions in the case of
(semi-)autonomous tele-operated robots acting in
poorly structured environments, e.g., underwater
vehicles. According to the tele-operation paradigm
(Sheridan, 1989), the need for the human operator of
interacting with the execution activities at various
levels, i.e. setting the desired force/torque, speed or
position variables in order to cope with different
operating conditions, motivated the design of
hierarchical motion estimation and control
architectures which can be activated from bottom

upwards. The basic properties of "from bottom
upwards activation" and "data consistency" determine
a set of constraints on the task activation/deactivation
sequences which are related to the topological
structure of the execution level, i.e. the graph
representing the I/O relationships between the tasks,
rather than the semantics of each task. It is worth
noting that, in the following, control architectures
including integral controllers will be considered. In
this case, the property that control tasks can get active
only if their output variables are actually applied to
the robot shall be verified too.
A method to design an execution control module that
deals with these constraints has been already
proposed in (Caccia, et al., 2001), and it is based on
the Petri net formalism. In the present work, that
method is furtherly investigated in two ways. First, a
backward search algorithm is proposed, that can be
used to find a suitable sequence of transition firings
that can satisfy a user request. Roughly speaking,
when a command to activate or deactivate a task is
received, this algorithms looks for the correct
sequence of operations such that the request can be
fulfilled. Second, a method to monitor the behaviour
of the execution level, based on the continuous
analysis of the Petri net status, is presented; this
method allows one to embed in the execution control
module the ability to automatically activate the
estimation leg of the control architecture, and to
reconfigure the system in order to maintain the best
possible configuration.
The paper is organised as it follows. Conventional
intelligent control architectures are summarised in
Section 2, discussing the role played by the execution
control module the paper deals with. Section 3
summarizes the results from the paper (Caccia, et al.,
2001), while Section 4 and 5 describe the extensions
that are the main topic of this paper, i.e., the

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

backward search algorithm and the on-line
monitoring. Simulation results are depicted in Section
6; finally, Section 7 gives some concluding remarks.

2. SYSTEM ARCHITECTURE

An example of a conventional intelligent control
architecture is sketched in Figure 1.

Fig. 1. Intelligent control architecture.

The actuation and sensor systems provide the
execution level with a set of logical propulsion and
sensing modules embedding the interfaces with
physical devices. In the scope of this research the
execution level (EL) relies on a hierarchical control
system handling the robot’s kinematics, both absolute
and environment-based, and dynamics (speed
control). The operational variables χ, that describe the
kinematics task functions, and robot’s velocities ξ are
estimated by suitable motion estimation modules
which process basic internal and external sensor
measurements. Events E, signalling particular
interactions of the robot with the operating
environment and the status of advancement of motion
estimation and control tasks, are generated by the
execution event generator which monitors the tasks’
state and performances Θ. On this basis, the
coordination level dynamically schedules the motion
control and estimation tasks in order to reach the
desired goal. The execution control module, dealt
with in this paper, checks if the commanded
activation/deactivation f of the EL tasks can be
executed. In the case that this leads to a forbidden
state, the execution control determines a suitable
sequence of commands {f} which enable the
execution of the desired one.

3. PETRI NET-BASED DESIGN OF THE
EXECUTION CONTROL MODULE

This section briefly recalls the results from a previous
work (Caccia, et al., 2001). The main idea is to
identify the basic components of the execution
module and to represent them by means of the Petri
net formalism. Then, a set of rules on the behaviour
of the execution level is stated, and these rules are
expressed as predicates on the Petri net marking.
Finally, results from the Petri net theory are used to
modify the Petri net such that it enforces the
requested predicates. The execution level embeds a
set of elementary tasks, i.e. software components
capable of performing specific motion estimation and
control functions, which communicate through
variables, i.e. shared memory used for task I/O.
According to their semantics, variables can be
classified in the distinct sets of estimation and control
variables. The estimation variables contain the values
measured by sensors as well as the outputs of the
filtering algorithms, while the control variables
represent the references to be tracked by the control
tasks.

2.1. Nomenclature and execution level properties.

The following symbols will be used throughout the
paper to refer to tasks, variables, and related items.
V: set of variables
EV: set of estimation variables, i.e. sensor data

and estimates
CV: set of control variables, i.e. reference values
T: set of tasks
EI(t): set of estimation input variables of task t
CI(t): set of control input variables of task t
I(t): set of input variables of task t
EO(t): set of estimation output variables of task t
CO(t): set of control output variables of task t
O(t): set of output variables of task t
CT: set of control tasks = (){ }0: ≡∈ tEOTt

ET: set of estimation tasks = (){ }0: ≠∈ tEOTt

ECT(t): set of equivalent control tasks to task t =
() () () (){ }tOOtIICTt ≡∧≡∈ τττ :U

EST(v): set of estimate v DEMUX tasks =
(){ }vtOETt ≡∈ :

The definition of ECT, i.e., the observation that some
control tasks can share the same set of input and
output variables (see Figure 2), lets one to add the
ability to switch among these tasks. This is of
particular importance, since it allows to modify the
control system configuration through a simple
operation involving only the two tasks among which
the switch occurs. Similarly, the definition of the
estimate DEMUX tasks refers to the capability, for
the proposed architecture, to dynamically modify the
connections among the tasks. In fact, tasks are
statically linked to their input and output variables;
however, on the estimation leg, it is possible to assign
to a variable, a value chosen among a set of

alternatives, thus overcoming the limitation (see
Figure 3).

Fig. 2. Equivalent control tasks.

Fig. 3. Switch among estimation variables.

The above-described components of the execution
level are represented by means of Petri nets. A
standard task t �is represented by means of the Petri
net (PNT) depicted in the following picture.

Fig. 4. Petri net representing a single task.

The net has two places () (){ }txtx RI , , where ()txR is
the place corresponding to task t running, whereas

()tx I is the one corresponding to task t idle. That is,
each of the two places is marked when and only when
the corresponding task in the execution level is
running or idle, respectively. The two
transitions () (){ }tftf DA , correspond to the operations
of activating or deactivating the task. Finally, using
the matrix representation, the dynamics of the Petri
net related to this task is described by:

()
()

()
()

()
()

kD

A

kR

I

kR

I

tf

tf

tx

tx

tx

tx

−

−
+

=

+
11

11

1 .

Both the DEMUX task and the case of equivalent
control tasks share the same Petri net representation,
as they are both reconducible to a set of concurrent
conflicting tasks. Hence, the Petri net (PNST) in
Figure 5 is used to describe both structures. The net
has n+1 places () () (){ }nRRI txtxx ,...,, 1α (where n is
the number of equivalent control tasks or of possible
switch positions). ()iR tx is the place corresponding
to task ti being running (in the case of estimate demux
task, it corresponds to the switch being in position ti);

()αIx is the place corresponding to task α idle, i.e.

all the tasks { }ntt ,...,1 idle (or switch in an opened
position, for the case of the estimate demux tasks).

Fig. 5. Petri net representing two equivalent control
tasks, or a switch between two estimation
variables.

The 2n+n(n-1) transitions are:
() () () () (){ ,...,,,,...,, 2111 ttftftftftf SnDnADA

() ()}1,,...,,..., −nnSjiS ttfttf

where, ()iA tf is the transition corresponding to the

activation of task ti; ()iD tf is the one corresponding

to the deactivation of task ti; finally, ()jiS ttf , is the

transition corresponding to switch from task ti to task
tj. The matrix notation provides the following
description of the net:

()
()
()

()
()
()

()
()
()
()
()
()

kijS

jiS

jD

jA

iD

iA

kjR

iR

I

kjR

iR

I

ttf

ttf

tf

tf

tf

tf

D

tx

tx

x

tx

tx

x

+

=

+

,

,1

α

αα

 ,

where:

−−
−−

−−
=

111100

110011

001111

αD .

By superposing the above-described structures, it is
possible to obtain a raw Petri net representation of the
execution level. This net is the basis for the
application of the supervision method proposed by
(Yamalidou, et al., 1996). Using the matrix notation,
the raw Petri net behaviour is described by:

krkk fDxx +=+1 .

Let denote with mr and n the total number of places
and transitions respectively. Moreover, let define the
following symbols, that will turn out to be useful in
the remainder of the paper:

()tR : sum of the tokens in the set of places
corresponding to task t running, i.e.,

() ()txtR R≡

()tR : sum of the tokens in the set of places
corresponding to task t not running, i.e.,

 ()
()
() ()

[]

∈+
∈

≡ ∑
≠∈

PNSTtiftxx

PNTtiftx
tR

i
ijnj

jRI

iiI

i ,

,

,,1

α

3.1 Task connection rules

The execution of complex missions requires that the
connections between tasks are dynamically
established according to mission events and
requirements. Each task does not a priori knows
which tasks will produce/consume its input/output
variables, and suitable task activation, deactivation,
and switching operations determine these connections
at any time instant. A set of run-time constraints,
linking the task I/O relationships to the structure of
the control and motion estimation architecture, enable
the verification of the correctness of any task
configuration.
(R1) no concurrent writing

()
()

∑
∈

≤∈∀
tOvt

tRVv
:

1,

(R2) no concurrent tracking

()
()

∑
∈

≤∈∀
tCIvt

tRCVv
:

1,

(R3) complete tracking of written control variables

() () ()
()

∑
∈

≥+∈∈∀∈∀
ττ

τ
CIv

RtRtCOvCTtCVv
:

1,:,

(R4) complete writing of consumed estimation
variables

() () ()
()

∑
∈

≥+∈∈∀∈∀
ττ

τ
EOv

RtRtEIvTtEVv
:

1,:,

Rule (R1) states that, at any time instant, there can not
be two or more running tasks having the same output
variable. Rule (R2) ensures that there are no control
tasks tracking the same reference value at the same
time. Roughly speaking, this rule establishes the
uniqueness of the control strategy. Rules (R3) and
(R4) establish the “from bottom upwards” activation
of the control system. (R3) affirms that generated
reference values must be tracked, while rule (R4)
states that each input estimation variable of a running
task must be the output of another (necessarily,
estimation) running task. That is, estimation tasks
must be activated from bottom up, and before the
control tasks using their outputs.

These constraints can be enforced by means of the
results from (Yamalidou, et al., 1996). The method
will not be furtherly described here, since a thorough
investigation is already available in (Caccia, et al.,
2001), and the reader is referred to that paper for
more details. For our purposes, it is sufficient to know
that it is possible to obtain a Petri net embedding the
constraint, that is described by:

kkk
c

r

kc

r

kc

r
k fDXf

D

D

x

x

x

x
X +=

+

=

=

+
+

1
1 ,

The total number of places of the net is denoted by m,
whereas the total number of transitions remains
unchanged (i.e., n). The net { }cc Dx , is called the

controlling net, and mc denotes the number of its
places.

The execution control module embeds the Petri net
representation of the execution level. During the on-
line operations it checks every command received
from the upper levels, and verifies its feasibility.
When the command cannot be executed in the trivial
way (that is, simply firing the corresponding
transition in the Petri net), a valid firing sequence is
searched for, by means of the algorithm illustrated in
the next section. Moreover, the execution control
module performs a continuous monitoring of the
configuration of the execution level. In the case that a
better feasible configuration is found, the control
architecture is automatically reconfigured, as it is
described in Section 5

4 PETRI NET RECONFIGURATION

The request from the upper levels of the control
architecture to activate/deactivate a task can be
mapped to the requirement of having a certain place
of the net marked with one token. Basing on this
observation, we define a Goal of the control
architecture as the requirement to have a set of places
of the net marked. It can be easily verified that there
is not a unique marking satisfying the goal, in general.
In some cases there can be multiple alternatives, in
other cases the goal might be inadmissible. Moreover,
the satisfaction of the goal can be subject to auxiliary
constraints, such as the invariance of a part of the
marking, that can correspond to keeping active some
previous goal. Thus, the aim of the search algorithm
is to find a suitable sequence of transition firings such
that a set of places is marked, and another set of
places does not change its marking. The second set
might be empty in some cases.

An algorithm for fulfilling this requirement has been
implemented, and it is based on the idea of backward
analysing the net, starting from the places that have to
be marked, and searching for the transitions that can
turn out to be of some utility for marking these places.
Thus, in some way, the method resembles the
backward phase of the spreading methodologies
(Bagchi, et al., 2000).

Before detailing the algorithm, let’s introduce some
further notation. Transition j is a predecessor of place
i iff () 1, ≡jiD ; place i is a predecessor of transition j

iff () 1, −≡jiD . Symbol uX(i) denotes the utility of
the ith place, with i=1..m. Analogously, symbol uf(j)
denotes the utility of the jth transition, with j=1..n.
Moreover, g represents the index of the goal place;
finally, EG is the coefficient of the utility injected by
the goal at each iteration. Furthermore, Pζ and

Tζ are the values assigned to each place or transition,
respectively. These values are established during the
design phase of the control architecture.
Now, it is possible to illustrate a sketch of the
algorithm.
while <X(g)≠1> at each step:

utility injection by goal:
() () ()gEguXguX PGζ+=

backward spreading of place utilities, i.e.,
activation of predecessor transitions:

defined ()j,iufδ as the utility spread
backward by place i to transition j,
if transition j is a predecessor of place i and j
is activable

() () ()
()

()[] []
∑
∧≡

=

activablekkiDk
T

T

k

j
iuXjiuf

1,:

,
ζ

ζ
δ

() ()∑
=

=
m

i

jiufjuf
1

,δδ

backward spreading of transition utilities, i.e.,
activation of predecessor controlling places:

defined ()jiuX ,δ as the utility spread
backward by transition j to place i
if place i is a predecessor of transition j

() () ()
()

()[]

[]mmi
k

i
jufjiuX r

jkDk

P ,,, 1

1,:

+

−≡

∈=
∑ζ

ζ
δ

() () []∑
=

+∈=
n

j
r mmijiuXiuX

1
1,,,δδ

backward search stop conditions
In order to avoid the propagation the backward
search through the loops in the PN, some
simple rules are applied:
• transitions that are predecessors of marked

places are inhibited
• transitions that are successors of useful

places are inhibited (these transitions
would eliminate a desired token from the
net)

Note that the termination of the algorithm is also
guaranteed by the fact that backward utility is spread
only to places belonging to the controlling net; this is
because the controlling places are the only ones
embedding the information about the conflicts and
dependencies among the tasks, hence, they are the
only to be considered when looking for the feasibility
of a sequence of tasks activations/deactivations.

5. PETRI NET-BASED OPTIMIZATION

Besides the reconfiguration that occurs upon a
command receipt, the execution control module has
the capability to perform a continuous monitoring of
the state of the control architecture, and to reconfigure
it, if a better configuration is found. In fact, it is
possible to assign a value to the state (running/idle) of
each task, and it is represented by the function Pζ .
On the basis of this information a monitor can be built
that analyzes the state of the Petri net and computes
the overall value associated to the current
configuration. Then, continuously, it verifies if there
exist transition firings that can lead the net (and
hence, the execution level) to a configuration with an
higher total value. Not all transitions are considered
for this purpose, but only the ones related to the
estimation tasks or to the switches between control

tasks. Practically, this means that the estimation leg of
the control architecture is kept active whenever
possible; moreover, the proper estimation variable
and control functions are automatically chosen by the
execution control module.

6. SIMULATION RESULTS

A part of the control system of an underwater
remotely operated vehicle has been simulated (see
Figure 6). The tasks involved in the example are
described in the following. altimeterBow,
altimeterStern, and depthMeter are tasks interfacing
with the related physical devices; correspondingly,
verticalPropulsion is the control task that provides the
interface to the actuators. heaveEKF, hFilterBS, and
hFilterB are estimation tasks devoted to computing
the estimates of the vertical speed and position
(heaveEKF) and of the altitude from the sea-bed
(hFilterB and hFilterBS). Note that two different
estimates of the altitude are available, and a selector
is provided to switch between them at any time.
autoDepth, autoHeave, autoAltitudeP, and
autoAltitudePI are standard controllers. Finally,
zRefOp and hRefOp are the tasks receiving the depth
and altitude reference values from the upper levels of
the control architecture, or from the operator.

Fig. 6. Sketch of Romeo’s control system.

Table 1 summarizes the behaviour of the control
system. The clock column, as well as the references to
time steps in the following paragraph, are to be
interpreted as occurrences of events. At time step 2 a
command is received to activate task zRefOp, the
following operations (3-11) represent the correct
sequence of actions to be performed in order to satisfy
the request. Next, the system autonomously evolves
(steps 12 to 16) activating a set of estimation tasks.
The next command, received at time instant 21, is
accomplished by deactivating the tasks zRefOp and
autoDepth, which are in conflict with the desired
tasks autoAltitudePI and hRefOp. Note that the

activation of the required estimation tasks is not
necessary, since it was done during the autonomous
evolution of the system.

Table 1 Simulation results.

clock description
2 command: activate task zRefOp
5 activate verticalPropulsion
6 activate depthmeter
7 activate dynamicsSensor
8 activate heaveEKF
9 activate autoHeave

10 activate autoDepth
11 activate zRefOp

List of active tasks:
'zRefOp' 'autoDepth' 'autoHeave'
'verticalPropulsion' 'heaveEKF'
'depthmeter' 'dynamicsSensor'

12 activate altimeterS
13 activate altimeterB
14 activate hFilterBS
15 hhat ß hhatBS
16 activate hFilterB

List of active tasks:
'zRefOp' 'autoDepth' 'autoHeave'
'verticalPropulsion' 'heaveEKF'
'hFilterBS' 'hFilterB'
'depthmeter' 'dynamicsSensor'
'altimeterS' 'altimeterB'
'hhat' ß 'hhatBS'

21 command: activate task hRefOp
24 deactivate zRefOp
25 deactivate autoDepth
26 activate autoAltitudePI
27 activate hRefOp

List of active tasks:
'hRefOp' 'autoHeave'
'verticalPropulsion' 'heaveEKF'
'hFilterBS' 'hFilterB'
'depthmeter' 'dynamicsSensor'
'altimeterS' 'altimeterB'
'autoAltitudePI'
'hhat' ß 'hhatBS'

35 emergency
deactivate task altimeterS

37 hhat variable switch hhatBS hhatB
38 deactivate hFilterBS
39 deactivate altimeterS

List of active tasks:
'hRefOp' 'autoHeave'
'verticalPropulsion' 'heaveEKF'
'hFilterB' 'depthmeter'
'dynamicsSensor' 'altimeterB'
'autoAltitudePI'
'hhat' ß 'hhatB'

44 end emergency
activate task altimeterS

44 activate altimeterS
45 activate hFilterBS
46 hhat ß hhatBS (hhatB)

List of active tasks:
'hRefOp' 'autoHeave'
'verticalPropulsion' 'heaveEKF'
'hFilterBS' 'hFilterB'
'depthmeter' 'dynamicsSensor'
'altimeterS' 'altimeterB'
'autoAltitudePI'
'hhat' ß 'hhatBS'

Later on (time step 35), a temporary malfunctioning is
detected for the altimeterStern, hence, the related task
is switched off. The system is reconfigured by simply
deactivating the corresponding estimator, and
switching to the alternative altitude estimate (hHatB).
Finally, at time step 44, the altimeter is switched on
again (the temporary problem is supposed to be
terminated). Consequently (time steps 44 to 46), the
system is automatically reconfigured to use this
sensor.

7. CONCLUSIONS

A methodology to exploit the information embedded
in the I/O relationships among tasks, in order to
control their execution, has been presented. The
representation of the execution level as a Petri net
allows the automatic reconfiguration of the control
architecture. An algorithm for finding the proper
sequence of operations to switch between various
configurations has been introduced, and it is based on
the analysis of the Petri net. Finally, it has been
showed how to design a monitor that maintains the
best possible configuration of the control architecture,
given the current availability of hardware and
software components.

References

Alami, R., Chatila, R., Fleury, S., Ghallab, M. and
Ingrand, F. (1998). An Architecture for
Autonomy. The International Journal of Robotics
Research. 17, pp. 315-337.

Antsaklis, P.J. and Passino, K.M. (1993) Introduction
to intelligent control systems with high degrees of
autonomy. In: An introduction to intelligent and
autonomous control. Kluwer Academic
Publishers, Boston, USA.

Bagchi, S., Biswas, G. and Kawamura, K. (2000).
Task planning under uncertainty using a spreading
activation network. IEEE Transactions on
Systems, man, and Cybernetics – Part A: Systems
and Humans, 30, pp. 639-650.

Caccia, M., Coletta, P., Bruzzone, G. and Veruggio,
G. (2001). Petri net-based execution control of
robotic tasks. In: Proc. Mediterranean Conference
on Control and Automation. Dubrovnik, Croatia.

Fierro, R.F. and Lewis, L. (1997). A framework for
hybrid control design. IEEE Transactions on
Systems, man, and Cybernetics – Part A: Systems
and Humans, 27, pp. 765-773.

Sheridan, T.B. (1998). Telerobotics. Automatica. 25,
pp. 487-507.

Valavanis, K.P. and Saridis, G.N. (1992). Intelligent
Robotic Systems: Theory, Design and
Applications. Kluwer Academic Publishers, USA.

Yamalidou, K., Moody, J., Lemmon, M. and
Antsaklis, P.J. (1996). Feedback control of Petri
nets based on place invariants. Automatica. 32, pp.
15-28.

