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Abstract: The paper studies complete stabilization of a class of distributed parameter
systems described by linear evolution equations in Hilbert spaces. Based on the
controllability assumption of underlying control systems, complete stabilizability
conditions for linear time-varying control systems with multiple state delays as well as
for a class of nonlinear control systems in Hilbert spaces are established. The feature
of the obtained result is that the complete stabilizability conditions are derived from
the solution of Riccati differential equation and do not involve any stability property
of its evolution operator.
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1. INTRODUCTION

Consider a distributed parameter system of the
form

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ t0, (1)

where x ∈ X is the state output , u ∈ U is
the control input, X,U are infinite-dimensional
spaces. The standard stabilizability question for
system (1) is how the operator K(t). : X → U can
be found in order to keep the closed-loop system
ẋ(t) = [A(t) + B(t)K(t)]x(t) exponentially stable
in the Lyapunov sense, i.e., the evolution operator
UK(t, s) generated by A(t)+B(t)K(t) satisfies the
condition

——————————–

∗ On leave from the Institute of Mathematics,
Hanoi, Vietnam.

‖UK(t, s)‖ ≤ Ne−δ(t−s), ∀t ≥ s ≥ t0. (2)

The positive number δ is commonly called a Lya-
punov exponent and operator K(t) is called a
feedback control operator. In the literature on
control theory of dynamical systems, stabilizabil-
ity is one of the important properties of the sys-
tem and has attracted the attention of many re-
searchers (see, e.g., Ahmed 1990; Benabdallah and
Hammami, 1992; Petersen et al., 2000; Sun et al.,
1998; Zak, 1990 and references therein). In prac-
tice various stability definitions have been made to
extend the usefulness of the exponential stability
concept. The concept of complete stabilizability
is related to a strong exponential stability of its
evolution operator that for every given number
δ > 0, there exists a feedback operator K(t)
such that the evolution operator UK(t, s) rati-
fies the condition (2). The definition of complete
stabilizability originally introduced by Wonham,
(see; Wonham, 1967) means that the zero-input
response of the closed-loop system decays faster
than eδt for any given Lyapunov exponent δ > 0.
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It is obvious that if the system is completely sta-
bilizable, then it is exponentially stabilizable, but
the converse is in general not true. Some results
on relationship between complete stabilizability
and controllability of finite-dimensional systems
can be found in (Ikeda et al., 1972; Megan, 1975;
Phat and Dieu, 1992; Savkin and Petersen, 1999).
For infinite-dimensional systems, the investiga-
tion of controllability and stabilizability is more
complicated and requires sophisticated techniques
from functional analysis theory. The difficulties
increase to the same extent as passing from time-
invariant to time-varying systems. Under appro-
priate controllability assumptions, some exten-
sions have been given in (Curtain and Zwart,
1995) for time-invariant systems in Hilbert spaces
and in (Ahmed, 1990, Ikeda et al., 1972) complete
stabilizability conditions for time-varying systems
were derived by using Kalman’s controllability
decomposition of finite-dimensional systems.

The object of this paper is to find complete stabi-
lizability conditions for infinite-dimensional time-
varying control systems with multiple delays on
the states. In contrast to previous results, based
on controllability assumption on the underlying
control system the stabilizability conditions are
obtained from the solution of the Riccati differ-
ential equation (RDE) and do not involve any
stability property of the evolution operator U(t, s)
and hence are easy to verify and construct. An
efficient algorithm to find feedback controllers via
solving RDE is also proposed. The approach al-
lows us to derive sufficient conditions for complete
stabilizability of nonlinear control systems.

2. PRELIMINARIES

The following notations will be used in force
throughout. R denotes the set of all real numbers;
X denotes a Hilbert space with the norm ‖.‖
and the inner product 〈., .〉; L(X) (respectively,
L(X, Y )) denotes the Banach space of all linear
bounded operators S mapping X into X (respec-
tively, X into Y ) endowed with the norm

‖S‖ = sup{‖Sx‖ : x ∈ X, ‖x‖ ≤ 1}.
L2([t, s], X) denotes the set of all strongly mea-
surable 2−integrable X−valued functions on [t, s];
C[t, s] denotes the Banach space of all continu-
ous functions on [t, s];D(A), Im(A), A∗ and A−1

denote the domain, the image, the adjoint and
the inverse of the operator A, respectively; cl M
denotes the closure of a set M ; I denotes the
identity operator. Operator Q ∈ L(X) is called
non-negative definite (Q ≥ 0) if 〈Qx, x〉 ≥ 0, for
all x ∈ X. If 〈Qx, x〉 > 0 for x 6= 0, then Q is
called positive definite (Q > 0). In case if there is
a number δ > 0 such that

〈Qx, x〉 ≥ δ‖x‖2, ∀x ∈ X,

then Q is called strictly positive definite and
denotes by Q � 0; Operator Q ∈ L(X) is
called self-adjoint if Q = Q∗; BC([0,∞), X+)
denotes the set of all linear bounded self-adjoint
non-negative definite operators Q(t) ∈ L(X),
continuous and bounded in t ∈ [0,∞). Let X, U be
Hilbert spaces. Consider the linear time-varying
system [A(t), B(t)] given by

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ t0,

x(t0) = x0, (3)

where x(t) ∈ X,u(t) ∈ U,A(t) : X → X,B(t) ∈
L(U,X). In the sequel, we say that control u(t)
is admissible if u(t) ∈ L2([t0, s], U), s ∈ [t0,∞).
We make the following assumptions on the system
(3) throughout the paper. (i) B(t) ∈ L(U,X) and
B(.)u is a bounded continuous function on [t0,∞)
for all u ∈ U. (ii) The operator A(t) : D(A(t)) ⊂
X → X, clD(A(t)) = X, is a bounded function
in t ∈ [t0,∞) and generates a strong evolution
operator U(t, τ) : {(t, τ) : t ≥ τ ≥ t0} → L(X)
(see, e.g. Benssousan et al., 1992; Curtain and
Zwart, 1995) such that the system (3), for every
admissible control u(t), has a unique solution
given by

x(t) = U(t, t0)x0 +
∫ t

t0
U(t, τ)B(τ)u(τ)dτ.

The concept of controllability is concerned with
the question of existence of admissible controls
which steer any state to an another state of the
system in finite time. Depending on the properties
involved one defines variety of controllability con-
cepts. Various aspects of controllability theory can
be found in (Ahmed, 1990; Kalman, 1960; Phat,
1996 and references therein).

Definition 2.1. The system [A(t), B(t)] is called
globally null-controllable in time T > 0, if every
state can be transfered to 0 in some time T > 0
by an admissible control u(t), i.e., for every x ∈ X
there is an admissible control u(t) such that

U(T, t0)x +
∫ T

t0
U(T, s)B(s)u(s)ds = 0.

Proposition 2.1. (Curtain and Zwart, 1995) The
system [A(t), B(t)] is globally null-controllable in
time T if and only if there is a number c > 0 such
that for all x ∈ X :

∫ T

t0
‖B∗(s)U∗(T, s)x‖2ds ≥ c‖U∗(T, t0)x‖2.

Definition 2.2. The system [A(t), B(t)] is called
exponentially stabilizable if there exists an op-
erator function K(t) ∈ L(X, U) such that the
condition (2) holds for some N > 0, δ > 0.

Definition 2.3. The system [A(t), B(t)] is called
completely stabilizable if for every number δ > 0,



there exists an operator function K(t) ∈ L(X,U)
such that the condition (2) holds.

Thus, in a stronger sense, the complete stabi-
lizability means that the closed-loop system can
be made exponentially stable for any given Lya-
punov exponent δ > 0. Associated with system
[A(t), B(t)] we consider a quadratic cost func-
tional of the form

J(u) =
∫ ∞

t0
[〈R(t)u, u〉+ 〈Q(t)x, x〉]dt, (4)

where R(t) � 0, Q(t) ∈ BC([t0,∞), X+) and
consider the following abstract RDE

Ṗ + A∗P + PA− PBR−1B∗P + Q = 0. (5)

Definition 2.4. An operator P (t) ∈ L(X) is said
to be a solution of RDE (5) if for all t ≥ t0, ∀x ∈
D(A(t)) :

〈Ṗ x, x〉+ 〈PAx, x〉+ 〈Px, Ax〉

−〈PBR−1B∗Px, x〉+ 〈Qx, x〉 = 0.

For solving optimal quadratic control problem (3),
(4) we have the following

Proposition 2.2. (Benssounsan et al., 1992) As-
sume that the optimal quadratic control problem
(3), (4) is solved in the sense that for every initial
state x0, there is an admissible control u(t) such
that the cost functional (4) exists and is finite.
Then for every Q(t) ∈ BC([t0,∞), X+), the RDE
(5) has a solution P (t) ∈ BC([t0,∞), X+). More-
over, the control u(t) given in the feedback form

u(t) = −R−1(t)B∗(t)P (t)x(t), t ≥ t0, (6)

minimizes functional (4).

3. STABILIZABILITY CONDITIONS

Consider a distributed parameter system of the
form

ẋ(t) = A(t)x(t) +
r

∑

i=1

Ai(t)x(t− hi) + B(t)u(t), ,

x(t) = φ(t), t ∈ [−hr, t0], (7)

where t ≥ t0, 0 ≤ h1 ≤ ... ≤ hr; r ≥ 1. We as-
sume that the operator functions A(t), A1(t), B(t)
satisfy the assumptions stated in the previous
section such that for every initial condition φ(t) ∈
C[−hr, t0] and admissible control u(t), the system
(7) has an unique solution. We define xt = x(t +
s),−hr ≤ s ≤ t0 and

‖xt‖ = sup
s∈[−hr,t0]

‖x(t + s)‖.

For some δ > 0 we set

Ã(t) = A(t)+δI, Ãi(t) = eδhAi(t), B̃(t) = eδtB(t),

and consider the Riccati differential equation

Ṗ + Ã∗P + PÃ− PB̃B̃∗P + Q = 0, t ≥ t0.(8)

The following theorem shows that the feedback
control stabilizer for system (7) can be found from
the solution of Riccati differential equation (8).

Theorem 3.1. Assume that for every δ > 0 and
Q(t) ∈ BC([t0,∞), X+) the Riccati equation (8)
has a unique solution P (t) ∈ BC([t0,∞), X+)
such that

Q(t) ≥ (r + 1)I +
r

∑

i=1

P (t)Ãi(t)Ã∗i (t)P (t). (9)

Then the system (7) is completely stabilizable.

Sketch of the proof. Let t0 = 0, δ > 0, be an
arbitrary number and let y(t) = eδtx(t). Then
system (7) is transformed to the system

ẏ(t) = Ã(t)y(t) +
r

∑

i=1

Ãi(t)y(t− hi) + B̃(t)u(t),

y(t) = eδtφ(t) := ψ(t), t ∈ [−hr, 0]. (10)

We shall prove that every solution of system (10)
is bounded. Let Q(t) ∈ BC([0,∞), X+) and the
Riccati equation (8) has a unique solution P (t) ∈
BC([0,∞), X+) such that the condition (9) holds.
Let

u(t) = −1
2
B̃∗(t)P (t)y(t), t ≥ 0, (11)

and we consider a Lyapunov function for the
system (10) of the form

V (t, yt) = 〈P (t)y, y〉+
r

∑

i=1

∫ t

t−hi

〈y(s), y(s)〉ds.

Taking derivative of V (t, yt) along the solution
y(t) of the system and using the control (11), we
may arrive the following estimation

V̇ (t, yt)≤−〈[Q− rI −
r

∑

i=1

〈P ∗i (t)Pi(t)]y(t), y(t)〉.

Therefore, if the condition (9) holds then

V̇ (t, yt) ≤ −‖y(t)‖2, ∀t ≥ 0. (12)

Integrating both sides of (12) from 0 to t, we
obtain

∫ ∞

0
‖y(s)‖2ds ≤ c,

for some number c > 0, which implies that the
solution y(t) is bounded. Thus, there is a number



N > 0 such that ‖y(t)‖ ≤ N‖ψt‖, ∀t ≥ 0.
Consequently, every solution x(t) of system (7)
satisfies

‖x(t)‖ ≤ N‖φt‖e−δt, ∀t ≥ t0.

Theorem is proved.

Corollary 3.1. Assume that for every δ > 0 the
Riccati equation

Ṗ + (A + δI)∗P + P (A + δI)−

P
[

e2δtBB∗ −
r

∑

i=1

e2δhiAiA∗i
]

P + (r + 1)I = 0,

has a unique solution P (t) ∈ BC([t0,∞), X+),
then the system (7) is completely stabilizable.

We need the following lemma, the proof is based
on Proposition 2.2.

Lemma 3.1. If system [A(t), B(t)] is globally
null-controllable in finite time, then for every op-
erator Q(t) ∈ BC([t0,∞), X+) the Riccati differ-
ential equation (5), where R(t) = I has a solution
P (t) ∈ BC([t0,∞), X+) and the feedback control
(6) minimizes the cost functional (4).

Thus, the global null-controllability is, by Lemma
3.1, a sufficient condition for existence of the so-
lution of the Riccati equation, then we can derive
the following sufficient conditions for complete
stabilizability of system (7) under appropriate
assumption on the operators Ai(t), i = 1, 2, ..., r.
The proof is similar along to the proof of Theorem
3.1 using Proposition 3.1 and Lemma 3.1.

Theorem 3.2. Let system [A(t), B(t)] be globally
null-controllable in finite time. Assume that

rI ≥
r

∑

i=1

P (t)e2δhiAi(t)A∗i (t)P (t). (13)

where δ > 0; P (t) ∈ BC([t0,∞), X+) is a solution
of the Riccati equation

Ṗ + Ã∗P + PÃ− PB̃B̃∗P + (2r + 1)I = 0.(14)

Then the system (7) is completely stabilizable by
the feedback controller

u(t) = −e−δt

2
B∗(t)P (t)x(t). (15)

Sketch of the proof. Let δ > 0 be an arbitrary
number and let y(t) = eδtx(t). As in the proof
of Theorem 3.1, the system (7) is transformed to
the system (10). It suffices to prove that every
solution of system (10) is bounded. For this, from
Definition 2.1, Proposition 2.1 it follows that the
system [Ã(t), B̃(t)] is globally null-controllable in

T time. Therefore, in view of Lemma 3.1 the
Riccati equation (14), where R(t) = I, Q(t) =
(2r + 1)I, has a solution P (t) ∈ BC([t0,∞), X+).
From the assumption it follows that

Q = (2r + 1)I ≥ (r + 1)I +
r

∑

i=1

PÃiÃ∗i P.

Thus, the condition (9) of Theorem 3.1 is satisfied
such that the system is completely stabilizable by
the feedback control (15). Theorem is proved.

Remark 3.1. The condition (13) can be replaced
by the following

r
∑

i=1

sup
t∈[0,∞)

‖Ai(t)‖2 ≤
re−2δh

p2 , ∀t ≥ t0, (16)

where p = sup{‖P (t)‖ : t ∈ [t0,∞)}. Then,
the following simple step-by-step procedure can
be used to find the feedback controller, which
completely stabilizes the system (7):

Step 1: Verify the global null-controllability of
system [A(t), B(t)] by Proposition 2.1.

Step 2: Giving δ > 0, find solution P (t) ∈
BC([t0,∞), X+) of Riccati differential equation
(14).

Step 3: Verify the condition (16).

Step 4: The stabilizing controller is then defined
by (15)

Remark 3.2. Note that if Ai(.) = 0, i.e. the sys-
tem is undelayed in states, then the condition (9),
taking Q(t) = I, immediately holds for all δ > 0
and we obtain the following corollary, which shows
that all linear closed-loop systems of globally null-
controllable systems can be made exponentially
stabilizable for any given stability exponent. This
result extends some previous results for undelayed
finite-dimensional systems given in (Ahmed, 1990;
Ikeda et al., 1972; Kalman, 1960) as well as for
time-invariant systems in Hilbert spaces given in
(Megan, 1975; Phat and Kiet, 1999; Slemrod,
1974).

Corollary 3.2. If system [A(t), B(t)] is globally
null-controllable in finite time, then it is com-
pletely stabilizable.

By the same approach we can derive complete
stabilizability conditions for a nonlinear control
system of the form

ẋ = A(t)x + B(t)u + f(t, x, u), x(0) = x0, (17)

where x ∈ X, u ∈ U, and f(t, x, u) : [0,∞)×X ×
U → X is a some given nonlinear perturbation.
We recall that nonlinear control system (17) is



completely stabilizable if for every δ > 0, there
is a feedback operator K(t) ∈ L(X,U) such that
any solution x(t) of the closed-loop system

ẋ = [Ax + KB]x + f(t, x, Kx),

satisfies the condition

‖x(t)‖ ≤ Ne−δt‖x0‖, ∀t ≥ 0.

It is well known (see, e.g. Benabdallah and Ham-
mami, 2001; Sun et al., 1998; Zak, 1990) that stan-
dard stabilization conditions for nonlinear control
systems have been obtained based on the stabil-
ity of the evolution operator U(t, s) and on the
perturbation f(t, .) that for some a > 0, b > 0 :

‖f(t, x, u)‖ ≤ a‖x‖+ b‖u‖, (18)

for all (t, x, u) ∈ ([0,∞)×X × U). In contrast to
these results, as a consequence of the main result,
the following complete stabilizability conditions
for nonlinear control system (17) can be obtained
via the global null-controllability of control system
[A(t), B(t)]. Let us denote

p = sup
t∈[0,∞)

{‖P (t)‖}, β = sup
t∈[0,∞)

{‖B(t)‖}.

Theorem 3.3. Assume that system [A(t), B(t)]
is globally null-controllable. Nonlinear control sys-
tem (17) is completely stabilizable if condition
(18) holds with

b <
1

βp2 , a <
1− bβp2

2p
,

where P (t) is the solution of Riccati equation (8),
where Q(t) = e2δtI. Moreover, the feedback control
is given by (15).

4. AN EXAMPLE

Let l2 denote the Hilbert space of all sequences
x = (x1, x2, ...), xi ∈ R endowed with the norm

‖x‖ =
[
∞
∑

i=1

x2
i

] 1
2

< +∞.

Consider an abstract control system in l2 of the
form

ẋ(t) = A(t)x(t) + A1(t)x(t− h) + B(t)u(t),

x(t) = φ(t), t ∈ [−h, 0], (19)

where h > 0, x(t), u(t) ∈ l2, a > 0 and

A(t) : (x1, x2, ...) → (sin2tx1,−x2,−x3, ...),

A1(t) : (x1, x2, ...) →
a

t + 1
(x1, x2, ....),

B(t) : (x1, x2, ...) → (
1

t + 1
x1, e−tx2, e−tx3, ...).

Finding the evolution operator U(t, τ) by solving
the operator equation

d
dt

U(t, τ) = A(t)U(t, τ), U(t, t) = U(τ, τ) = I,

we have for all t ≥ τ :

U(t, τ) : (x1, x2, ...) → (ecos2τ−cos2tx1, e−(t−τ)x2,

e−(t−τ)x3, ...),

It is obvious that the evolution operator U(t, τ)
is not exponentially stable, however for every x =
(x1, x2, ....) ∈ l2 and T > 0 we have

∫ T

0
‖B∗(τ)U∗(T, τ)x‖2dτ ≥ c

[

e−2cos2T x2
1

+e−2T
∞
∑

i=2

x2
i

]

,

‖U∗(T, 0)x‖2 = e−2cos2T x2
1 + e−2T

∞
∑

i=2

x2
i .

Therefore, for any T ≥ 1, the condition of Propo-
sition 2.1 holds with c = 1/2, and the system
[A(t), B(t)] is globally null-controllable in time
T. Let δ > 0 be given number and let P (t) ∈
BC([0,∞), l2) be the solution of Riccati equation

Ṗ +(A+δI)∗P +P (A+δI)−e2δtPBB∗P +3I = 0.

Verifying the condition (16): a ≤ e−δh

2p , the linear
control system (19) is then completely stabilizable
by the feedback control (15).

5. CONCLUSIONS

We have presented in this paper complete stabi-
lizability conditions for infinite-dimensional time-
varying control systems with multiple state de-
lays. The conditions are obtained from the solu-
tion of Ricatti differential equations and do not
involve any stability property of the evolution
operator. An algorithm to find feedback controller
via solving the Riccati equation was proposed.
The problem of finding the solution of abstract
Riccati equations is still difficult and complicated,
however various efficient approaches to this prob-
lem can be found, for instance, in (Gibson, 1983;
Oostveen and Curtian, 1998).

The stabilization conditions obtained in this pa-
per are based on the global controllability of
the underlying control system. It is well known
that the constrained controllability problem has
been extensively considered (see, e.g., Phat, 1996;
Smirnov, 1996 and references therein), however
the stabilizability question of systems with con-
strained controls is still far from being solved. An
interesting question that remains open related to
this issue is the following.

Consider control system (1), where u(t) is con-
strained in some given subset, e.g., u(t) ∈ Ω ⊂ U.



Assume that this system with constrained con-
trols is globally null-controllable. The constrained
stabilization problem is to find a feedback con-
trol operator K(t) such that the control u(t) =
K(t)x(t) ∈ Ω completely stabilizes system (1).
The same question is proposed for nonlinear con-
trol system (17). Preliminary results for this prob-
lem related to finite-dimensional control systems
with special constrained control sets Ω may be
found in (Phat, 1996; Smirnov, 1996; Sun et al.,
1998).
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