
QUASI-PERIODIC PHENOMENA AND
PHASE-LOCKED ORBITS IN DC-DC BOOST

SWITCHING REGULATORS

Abdelali El Aroudi ¤;1 Gerard Olivar ¤¤;2

¤ Department of Electronic, Electric and Automatic
Engineering, Rovira i Virgili University, Carretera de

Salou, s/n 43006 Tarragona, Spain
¤¤Department of Applied Mathematics IV, Technical
University of Catalonia, EUPVG, 08800 Vilanova i la

Geltru, Spain

Abstract: Quasi-periodic route to chaos is a common feature in DC-DC switching
converters like the Boost and the Buck-Boost. A periodic orbit bifurcates into a T2

torus through a Neimark-Sacker bifurcation, and then, quasi-periodic behavior is
obtained. Further changes in the parameters may breakdown such torus resulting
in chaotic behavior. Analytical expressions are deduced for the stability character
of the orbits, although numerical simulations and experimental measurements are
also provided to reinforce the theory. Copyright c°2002 IFAC
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1. INTRODUCTION

Elementary switching converters such as buck,
boost and buck-boost are second order systems
since they have two energy storage elements.
Therefore, for any given switching condition, two
¯rst order di®erential equations are required to
describe the total behavior of the system. The
output voltage regulation is achieved by a con-
trol circuit which forces the system to switch
between two basic linear con¯gurations. These
regulators are piecewise linear and therefore, be-
tween switches, we can obtain exact closed-form
expression of the system trajectories. The switch-
ing instants are to be found numerically as they
are solutions of transcendental equations. Possi-
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ble non-periodic switching between two di®erent
con¯gurations makes the system time dependent.
Thus, the system is non autonomous, which as we
know, requires one more state space dimension.
For some feedback systems, such as PWM dc-
dc converters, the switching time depends nonlin-
early on the history of the state variables them-
selves. Therefore, we have e®ectively a nonlinear
system. Hence this kind of piecewise linear model,
at least in principle, satis¯es the requirements for
chaos. Chaotic behavior and nonlinear phenomena
in PWM dc-dc basic power electronic regulators
have been extensively studied in the last years.
Several kinds of bifurcational behaviors have been
found in the elementary converters with di®erent
control schemes. Period doubling route chaos is
investigated for the buck converter working in the
continuous conduction mode both experimentally
and numerically (Hamill, et al., 1992). Mathe-
matical analysis of 1-periodic, 2-periodic and high
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Fig. 1. Block diagram of a Dc-Dc switching regu-
lator

periodic orbits for the same converter is presented
in (Fossas and Olivar, 1996) and (di Bernardo, et
al., 1997). Flip bifurcations and period doubling
route to chaos were also found in the buck and
the boost converters working in the discontinuous
conduction mode (Tse, 1994a; Tse, 1994b). More
recently, Neimark-Sacker bifurcation and quasi-
periodicity route to chaos were found to occur
in the PWM boost and buck-boost converters
(El Aroudi, et al., 1999; El Aroudi, et al., 2000)
and border collision bifurcations were reported in
buck and boost converters with di®erent control
strategies (Yuan, et al., 1998; Banerjee, et al.,
2000). The aim of this paper is to investigate in
the parameter space the mechanisms of loss of sta-
bility of the 1-periodic orbit when it experiences a
Neimark-Sacker bifurcation that can explain the
quasi-periodic route to chaos in a PWM voltage
controlled dc-dc boost converter. In order to re-
duce the parameter space, dimensionless formu-
lation will be used. A stabilization strategy will
be applied in order to force the system to return
to its nominal behaviour (1-periodic) after lossing
stability.

2. STATE SPACE MODELLING OF PWM
CONTROLLED DC-DC SWITCHING

REGULATORS

The block diagram of a PWM controlled dc-dc
switching regulator is shown in Fig. 1. Due to
the switching action, the system passes through
di®erent con¯gurations. We will suppose that the
system switches from one con¯guration to another
whenever the control voltage vco = a(VREF ¡
(kvvc + ki iL)) is equal to the T¡periodic modu-
lating signal vramp = VL +(VU¡ VL)(t=T ) mod 1.
The system switches from one phase to the other
one whenever the function vco ¡ vramp changes
its sign in such a way that vco > vramp in the
ON con¯guration (i.e., the switch is ON ) and
vco < vramp in the OF F con¯guration (the switch
is OFF ). Therefore the switching condition is
vco ¡ vramp = 0. The system switches between

the two phases at time instants nT (n 2 N) and
at the switching instant, within a PWM period,
for which vco = vramp. When the inductor current
becomes zero during the OF F phase, the discon-
tinuous conduction mode (DCM) takes place. The
system switches from the con¯guration OFF to
a third con¯guration (OF F

0
). Let us de¯ne the

dimensionless variables and parameters:

² Variables

v(t) =
vC (t)

VIN
;

i(t) =

p
L=C

VIN
iL(t);

¿ =
t

2¼
p
LC

² Parameters

Q =
Rp
L=C

; QS =

p
L=C

RS
;

VR =
VREF
kvVIN

¡ VU + VL
2AkvVIN

;

VD =
VU ¡ VL
AkvVIN

;

Z =
Aki=kvp
L=C

; TN =
T

2¼
p
LC

In the dimensionless formulation, the system
switches from one phase to the other one whenever
the di®erence function vcon ¡ vr changes its sign
in such a way that vcon < vr in the ON con¯g-
uration and vcon > vr in the OFF con¯guration,
where, vcon = v + Zi and vr = VR + VD=2 ¡
VD(¿ =TN ) mod 1 are the new (dimensionless)
control voltage and sawtooth modulating signal
respectively. Therefore the switching condition
is vcon ¡ vr = 0. The DCM takes place when
the dimensionless inductor current becomes zero.
During each phase the dynamic of the system is
described by:

_x = Ax +B (1)

where x = (v; i)
0

is the vector of the dimen-
sionless state variable and the overdot stands for
derivation with respect to dimesionless time ¿
( _x = dx=d¿ ). The solution during each phase
interval is available and takes the following form:

x(¿) = eA(¿¡¿S)x(¿S ) +

¿Z

¿S

eA(¿¡¾)Bd¾ (2)

which can be further written as:

x(¿) = ©(¿ ¡ ¿S )x(¿S) + ª(¿ ¡ ¿S ) (3)

where ©(¿) = eA¿ , ª(¿) = A¡1(©(¿) ¡ I)B, I
is the identity matrix and ¿S is the instant at
which the system switches from one con¯guration



to another. Namely, the system switches between
the two phases at time instants nTN (n 2 N)
and at the switching instant ¿n, within a PWM
period, for which the control voltage crosses the
modulating signal vr . x(¿S) is the state vector at
the switching instant.

Although the dynamic behavior in each linear
topology is easy to obtain, the closed-loop dynam-
ics are quite complicated, sometimes including
periodic, quasi-periodic and chaotic behavior, this
depending on the initial conditions of the state
variables and the values of the parameters.

3. DICRETE-TIME MODELLING AND
STABILITY ANALYSIS: THE POINCAR¶E

MAP

In order to simplify the structure of the phase
space and reduce the dimension of the system,
the Poincar¶e section is frequently used. It is con-
structed by viewing the intersection between the
tra jectory of the dynamical system and a certain
cut plane. In the case of periodically driven sys-
tems as power electronic converters, a plane § in
the cylindrical space is considered. The trajectory
of the system intersects § every period of the
driving signal. A map P which relates two succes-
sive points in the Poincar¶e section can be de¯ned.
Such a map is called the Poincar¶e map. Viewing
the state of the system each driving period is
similar to the action of a stroboscope °ashing with
the same period of the driving signal. For this
reason, this map is called also the stroboscopic
map. Under some operating conditions, it is more
suitable to use another kind of discrete-time mod-
elling for PWM power electronic converters (Di
Bernardo and Vasca, 2000). In this paper we will
use only the stroboscopic map.

P : § 7! §
xn 7! xn+1 n = 1; 2; :::

where xn = (v(nTN ); i(nTN ))
0

is the value of the
state vector at the instants nTN .

Using the solutions of the state equations of each
linear phase and linking them at the switching
instants this map can written as:

xn+1
def
= f (xn ; ¿n )
= ©2(TN ¡ ¿n)[©1(¿n )xn + ª1(¿n)]
+ª2(TN ¡ ¿n)

(4)

The ¯xed points x¤ of this map can be obtained
by enforcing periodicity: xn+1 = xn = x¤.

x¤ = [I ¡ ©2(TN ¡ ¿ ¤)©1(¿
¤)]¡1

¢[©2(TN ¡ ¿ ¤)ª1(¿
¤) + ª2(TN ¡ ¿¤)]

(5)

where ¿ ¤ is the switching instant corresponding to
the ¯xed point x¤ which is given by the following
equation

g(x¤; ¿ ¤)
def
= ° [©1(¿

¤ )x¤ + ª1(¿
¤)]¡ vr(¿

¤)

= 0 (6)

where ° = (1; Z) is the dimensionless gain vector
corresponding to k .

3.1 Floquet (characteristic) multipliers for stability
analysis of periodic solutions

For periodic solutions, which correspond to ¯xed
points of the Poincar¶e map P , the stability is
determined by their Floquet (or characteristic)
multipliers mi which are the eigenvalues of the
linearized map DP at the ¯xed point x¤. Near
this ¯xed point, the local dynamics are governed
by:

±xn+1 = DP (x¤)±xn

For PWM switching regulators, ¿n is given by the
switching equation.

g(xn; ¿n) = 0

The stroboscopic map P is nonlinear in xn and
its corresponding Jacobian matrix DP is given by
the following equation

DP =
@f

@xn
¡ @f

@¿n
(
@g

@¿n
)¡1 @g

@xn

¯̄
¯̄
(xn;¿n)=(x¤;¿¤)

= ©2(TN ¡ ¿¤)
¢[I ¡ ((C1 ¡ C2)x¤ + (D1 ¡D2))°

°(C1x¤ +D1) + VD=TN
]©1(¿

¤) (7)

where ¿ ¤ is the switching time corresponding to
the ¯xed point x¤. The eigenvalues of the DP
(Floquet or the characteristic multipliers) govern
the stability of the system. A necesary and su±-
cient condition for stability is that all the charac-
teristic multipliers has a modulus smaller than one
(jmi j < 1). If one of them cross the unite circle,
the system losses its stability.

4. BIFURCATION PHENOMENA OBTAINED
BY COMPUTER SIMULATION AND
EXPERIMENTAL MEASUREMENTS

A bifurcation diagram for the boost converter is
computed when the period TN is swept in the
range (0:04; 0:34) with the following values of the



Fig. 2. Bifurcation diagram taking TN as bifurcation parameter (a) computer simulation, (b) experimental
mesurements

Fig. 3. Evolution of the attractor of the boost
converter when TN is taken as bifurcation
parameter. Horizontal axis v, vertical axis i

remaining parameters Q = 5:23, QS = 6:5, VD =
1:4, VR = 1:2 and Z = 0 (voltage mode control).
The result is shown in Fig. 2-a. This bifurcation
diagram is also obtained experimentally and the
result is represented in Fig. 2-b. Figure 3 shows
the evolution of the stroboscopic map attractor
when TN is varied.

A summary of the bifurcations obtained follows:
For TN · 0:05, the attractor is a periodic or-
bit with small voltage ripple and the conduction
mode in this case is continuous for each cycle.

Fig. 3a shows the ¯xed point of the Poincar¶e map
at TN = 0:05; the transient state near this ¯xed
point indicates that it is a stable focus. This may
be con¯rmed by the fact that the characteristic
multipliers are complex conjugates with modulus
smaller than one. For Fig. 3a, the characteristic

multipliers are m§ = 0:946§ j0:319. Their mod-
ulus being jm§ j· 1.

By increasing TN , a Neimark-Sacker bifurcation
of the stroboscopic map occurs at a certain value
of TN between 0:05 and 0:06. The attractor be-
comes a torus T2, and the system operation be-
gins to °uctuate quasi-periodically between con-
tinuous and discontinuous conduction mode. If
we sample stroboscopically (once per ramp cy-
cle) the trajectory in the phase plane (v; i), we
obtain an in¯nite set of points that, when the
steady state is reached, belongs to an invariant
closed curve (Fig. 3b). This ring-like structure is
a typical signature of the incommensurability be-
tween the two frequencies acting on the dynamics
and, therefore, of the quasi-periodic behavior. For
TN = 0:06 (Fig. 3b), the ¯xed point is a spiral
source (unstable focus) and its characteristic mul-
tipliers are 0:925§ 0:380j. With further variation
of TN , the Poincar¶e section is a discrete set of p
points (p 2 N) and this behavior corresponds to
the phase-locking regime (Fig. 3c). The period p
of this frequency-locking behavior decreases when
TN increases (Fig. 3). For relatively large values
of TN , the attractor appears to be a torus whose
Poincar¶e section showing a pseudo-symmetry of
order equal to the period of the phase-locking
periodic orbit that existed previously (Fig. 3).
This scenario is repeated until the breakdown of
the alternation between the quasi-periodicity and
the phase-locking (TN ' 0:304). Then, another
scenario appears: a period doubling cascade route
to chaos begins with a periodic orbit of period 3,
and ¯nishes by culminating in a 3-piece chaotic
attractor.

5. TWO-DIMENSIONAL BIFURCATION
DIAGRAM AND ARNOLD TONGUES

In order to show the bifurcation structure when
varying at the same time both TN and VR , we



Fig. 4. 2-D bifurcation diagram of the boost converter showing Arnold tongues

have plotted the two-dimensional bifurcation di-
agrams corresponding to these parameters; the
result is shown in Fig. 4. The two-dimensional
bifurcation diagram is color-coded depending on
the periodicity of the attractor. Due to possible
coexisting attractors, only one of the attractors
can be identī ed at each point of the parameter
space.

6. STABILIZATION OF PERIODIC ORBIT

When the converter is working in the quasi-
periodic or in the chaotic regime, there may exist
unstable periodic orbits that can be stabilized.
In this section we propose a control scheme to
stabilize 1-periodic orbits in the Boost converter.
The method utilizes a cycle by cycle variable peak
to peak ramp voltage rather than a constant one.
Varying the peak to peak voltage is equivalent to
varying VU . We propose the following law to vary
VU .

vU;n = VU ¡ gv (vn ¡ v¤) (8)

where gv is a feedback factor. Note that when the
steady state is reached by the system (vn = v¤),
vU;n = VU . Therefore the nominal operation point
is not alterated by the control law introduced
in Eq. (8). Psim is used in order to apply this
control scheme to a Boost converter. The circuit
simulated is shown in Fig. 5. The values of the
parameters used are: R = 68, L = 5:4mH , RS =
2, C = 32¹F , Vref = 12V , VL = 2V , VU = 9V ,
kv = 1, ki = 0, a = 1, T = 400¹s and VIN = 5V .
With these values the ¯xed point of the strobo-
scopic map is x¤ = (v¤; i¤ ) = (7:7992;0:1151) and
its characteristic multipliers are ¸§ = 0:6106 §
0:8601j wich corresponds to an unstable focus,

and the dynamics of the system is a quasiperiodic
regime. When the control scheme introduced in
Eq. (8) is activated the ¯xed point becomes stable
and the the periodic orbit is reached after a few
cycles of transitory (Fig. 6).

7. CONCLUSIONS

In this paper we have shown that quasi-periodic
route to chaos is a common feature in DC-DC
power electronic circuits, specī cally, in Boost
switching regulators. Periodic orbits bifurcates to
a quasiperiodic attractor (torus). Such a torus
may breakdown to give chaotic behavior. One-
dimensional bifurcation diagrams show that there
are alternating windows of periodic orbits (phase-
locked). Two dimensional bifurcation diagrams
show that these phase-locked produce in the pa-
rameter space the so called Arnold tongues. Dif-
ferent numerical tools were used to study the
complicated phenomena in the system. A control
strategy is proposed to stabilize a periodic orbit
after losing stability by Neimark-Sacker bifurca-
tion, and Psim simulations show that it can work
succesfully. Experimental realization of these con-
trollers could be interesting for power electronic
regulation and will be investigated in further
works.
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