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Brett Ninness ∗,1 Håkan Hjalmarsson ∗∗

∗ Dept. of Elec. & Comp. Eng, Uni. Newcastle, Australia.
email:brett@ee.newcastle.edu.au, FAX: +61 49 21 69 93

∗∗ Dept. Sensors, Signals and Systems (Automatic Control), The Royal
Institute of Technology, S-100 44 Stockholm, Sweden,

email:hakan.hjalmarsson@s3.e.kth.se, FAX: +46 8 790
7329

Abstract: This paper accurately quantifies the way in which noise induced estimation errors
are dependent on model structure, underlying system frequency response, measurement noise
and input excitation. This exposes several new principles. In particular, it is shown here that
when employing Output–Error model structures in a prediction-error framework, then the
ensuing estimate variability in the frequency domain depends on the underlying system pole
positions. As well, it is also established that the variability is affected by the choice of model
structure, in that it is twice as much when system poles are estimated as when they are a-priori
known and fixed, even though the model order is the same in both cases. These results are
unexpected according to pre-existing theory.
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1. INTRODUCTION

When identifying a system model on the basis of observed
data, it is essential to quantify the likely error in that
estimated model. Typically, this consists of two compo-
nents. The first, a so-called “bias error”, is the result of the
model structure being less complex than the system being
estimated. The second, called “variance error”, is caused
by corruption of the input-output data measurements.

When the latter can be modelled as an additive stochas-
tic process, and the underlying system is linear, then it
is arguable that the total error in any identified model
that passes a validation test is dominated by variance
error (Ljung and Guo 1997).

In this common case, the quantification of estimation er-
ror then becomes a question of assessing variance error.
In relation to this, if the widely used prediction-error
method with a quadratic criterion is employed, then a
seminal result is that noise-induced error, as measured
by the variability of the ensuing frequency response es-
timate G(ejω , θ̂n

N ), may be approximated as (L.Ljung
1985, L.Ljung and Z.D.Yuan 1985, Ljung 1999)

Var{G(ejω , θ̂n
N)} ≈ m

N

σ2

Φu(ω)
. (1)

Here σ2 and Φu are, respectively, the (white) measure-
ment noise and (possibly coloured) input spectral densi-
ties, and θ̂n

N is the prediction error estimate based on N
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observed data points of a vector θn ∈ R
n that parame-

terises a model structure G(q, θn) for which (essentially)
m = dim θn/(2d) where d is the number of denomina-
tor polynomials to be estimated in the model structure.
In what follows in this paper, the Output–Error case of
m = n/2 will be exclusively considered.

Apart from its simplicity, a key factor underlying the
importance and popularity of the approximation (1) is
that, according to its derivation (L.Ljung 1985, L.Ljung
and Z.D.Yuan 1985, Ljung 1999), it applies for a very
wide class of so-called ‘shift invariant’ model structures.
For example, all the well known FIR, ARX, ARMAX,
Output–Error and Box–Jenkins structures are shift invari-
ant (L.Ljung 1985). As well, as shown in (Ljung 1999), it
also applies when non-parametric (spectral based) estima-
tion methods (Brillinger 1981, Ljung 1999) are employed
provided that the m term in (1) is replaced by one de-
pendent on the number of data points (and the windowing
function) used.

Therefore, the only influence that the chosen model struc-
ture has on the right hand side of (1) is in terms of its
order, and because of this the belief that Var{G(ejω , θ̂n

N )}
is invariant to the particular choice of m’th order model
structure has become a fundamental tenet of system iden-
tification.

Furthermore, it is also held as axiomatic that Var{G(ejω , θ̂n
N)}

does not depend on the underlying true frequency re-
sponse, again on account of the right hand side of (1)
being independent of that quantity; see, for example, the
work (Forsell and Ljung 1999, Gevers et al. 2001, Forssell
and Ljung 2000, Zhu 1998).

In relation to these conclusions, a series of recent contri-
butions (Wahlberg 1991, Wahlberg 1994, P.M.J. Van den
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Hof et al. 1995, Ninness et al. 1999b) has established a
variance error quantification that is an extension of (1)
and which is applicable to certain model structures which
have poles or zeros fixed according to prior knowledge.
For example, if an FIR structure is generalised so that its
fixed poles {ξ0, · · · , ξm−1} are not necessarily all at the
origin, then (Wahlberg 1991, Wahlberg 1994, P.M.J. Van
den Hof et al. 1995, Ninness et al. 1999b) has shown that
in the interests of maximally accurate approximation, the
quantification (1) should be modified to become

Var{G(ejω , θ̂n
N )} ≈ 1

N

σ2

Φu(ω)

m−1∑

k=0

1 − |ξk|2
|ejω − ξk|2

. (2)

Note that (2) reverts to (1) for the FIR case of ξk = 0.
Furthermore, in (Ninness et al. 1999b) it has been shown
that for ARX model structures with fixed noise model
zeros, again not necessarily at points {ξ0, · · · , ξm−1}
which are at the origin, then again the expression (2)
rather then (1) should be used in the interests of providing
the most accurate approximation of Var{G(ejω , θ̂n

N )}.

For both these generalised FIR and ARX cases where (2)
is preferable, when actually computing θ̂n

N , the process
of incorporating the fixed poles or zeros may be achieved
by first pre-filtering the input data with an all-pole filter
F (q), and then using a conventional FIR or ARX struc-
ture (Ninness et al. 1999b).

The previous work (Wahlberg 1991, Wahlberg 1994,
P.M.J. Van den Hof et al. 1995, Ninness et al. 1999b)
has therefore illustrated that the effect of pre-filtering
on Var{G(ejω, θ̂n

N )} cannot be accommodated by simply
making the substitutions Φu 7→ |F |2Φu, σ2 7→ |F |2σ2.
Instead the filter pole locations {ξk} must be directly ac-
counted for via (2). This establishes that the quantification
of Var{G(ejω, θ̂n

N )} cannot be expressed in a manner that
is invariant to the nature (roughly speaking, smoothness)
of the input and noise spectral densities.

The contribution of this paper is to extend this result and
in fact establish a more fundamental principle. Namely,
despite widely held belief, Var{G(ejω, θ̂n

N )} is not invari-
ant to either the model structure, or the underlying true
frequency response.

These new ideas are established by examining the esti-
mation of Output–Error model structures in which case
when {ξ0, · · · , ξn−1} are the estimated poles ofG(q, θ̂n

N ),
then the main result of this paper is to establish that the
expression

Var{G(ejω, θ̂n
N )} ≈ 2

N

σ2

Φu(ω)

m−1∑

k=0

1 − |ξk |2
|ejω − ξk |2

(3)

is a significantly more accurate quantification than the
widely held one (1).

As an example of the consequences of this expression,
comparing (3) with (2) indicates that the variability
Var{G(ejω , θ̂n

N )} associated with estimating a model with
fixed known poles {ξ0, · · · , ξm−1}, and hence only esti-
mating a numerator, is only one half the variability asso-
ciated with a model where the poles are estimated. Since,
roughly speaking, twice as much information is being
estimated, this result makes intuitive sense. However, it is

completely at odds with pre-existing thought derived from
(1) which (since the number of denominators polynomials
d = 1 in both cases) would indicate that Var{G(ejω , θ̂n

N )}
is invariant to whether poles are estimated or not!

2. PROBLEM FORMULATION

The problem setting considered here is one in which
a model structure is used to describe the relationship
between an observed input data record {ut} and output
data record {yt} as

yt = G(q, θn)ut + et. (4)

Here {et} is a zero-mean white noise sequence that sat-
isfies E{e2t} = σ2,E{|et|4+ε} < ∞ for some ε > 0
andG(q, θn) is a transfer function, rational in the forward
shift operator q, and parameterised by a vector θn ∈ R

n.

In this case, the relationship (4) is commonly known as
an ‘Output–Error’ model structure, and the mean-square
optimal one-step ahead predictor ŷt(θ

n) based on this
model structure is (Ljung 1999)

ŷt(θ
n) = G(q, θn)ut

with associated prediction error

εt(θ
n) , yt − ŷt(θ

n) = yt −G(q, θn)ut. (5)

Using this, a quadratic estimation criterion may be defined
as

VN (θn) =
1

2N

N∑

t=1

ε2t (θ
n)

and then used to construct the prediction error estimate
θ̂n

N of θn as

θ̂n
N , arg min

θn∈Rn

VN (θn). (6)

As has been established in (Ljung 1999), under certain
mild assumptions on the nature of the input {ut} (which
will be discussed in detail later), the estimate θ̂n

N con-
verges with increasing N according to

lim
N→∞

θ̂n
N = θn

◦ , arg min
θn∈Rn

lim
N→∞

E {VN (θn)} (7)

with probability one. As well, it also holds that as N
increases, the estimate θ̂n

N converges in law to a Normally
distributed random variable with mean value θn

◦ according
to (L.Ljung and P.E.Caines 1979, Caines 1988, Ljung
1999)

√
N(θ̂n

N − θn
◦ )

D−→ N (0, Pn), as N → ∞. (8)

The n×n ‘covariance matrix’Pn in (8) is defined in terms
of two other matrices Rn and Qn as

Pn , R−1
n QnR

−1
n (9)



which themselves are specified as

Rn , lim
N→∞

1

N

N∑

t=1

[
E

{
ψt(θ

n
◦ )ψT

t (θn
◦ )

}
−

E

{
εt(θ

n
◦ )

(
dψt(θ

n)

dθn

)T
}]

(10)

and

Qn , lim
N→∞

N∑

t,`=1

E
{
ψt(θ

n
◦ )ψT

` (θn
◦ )εt(θ

n
◦ )ε`(θ

n
◦ )

}
. (11)

The quantity ψt(θ
n) in the preceding expressions is the

prediction error gradient given by

ψt(θ
n) ,

dŷt(θ
n)

dθn
=

dG(q, θn)

dθn
ut. (12)

While an asymptotic distributional result like (8) is very
satisfying theoretically, for practical applications it is
rather less appealing, mainly due to the (just presented)
intricate definition of Pn via Qn, Rn and ψt(θ

n).

In response to this, the seminal work (Hannan and
Nicholls 1977, L.Ljung 1985, L.Ljung and Z.D.Yuan
1985, Ljung 1999) has proposed a solution by investi-
gating how (8) manifests itself in the variability of the
frequency response G(ejω , θ̂n

N ); the result being approxi-
mations such as (1).

The path towards achieving this involves noting that ac-
cording to a first order Taylor expansion, the relationship
between frequency domain and parameter space estima-
tion errors is given as

G(ejω , θ̂n
N ) −G(ejω , θn

◦ ) =

[
dG(q, θn)

dθn

∣∣∣∣
θn=θn

◦

]T

×

(θ̂n
N − θn

◦ ) + o(‖θ̂n
N − θn

◦ ‖). (13)

Therefore, a consequence of (8) is that as N → ∞
√
N

[
G(ejω , θ̂n

N ) −G(ejω , θn
◦ )

]
D−→ N (0,∆n(ω))(14)

where

∆n(ω) ,

[
dG(ejω , θn)

dθn

∣∣∣∣
θn=θn

◦

]T

Pn×

[
dG(e−jω , θn)

dθn

∣∣∣∣
θn=θn

◦

]
. (15)

The main contribution of this paper is to rigorously estab-
lish that this quantity ∆n(ω) may be accurately approx-
imated (or in some cases exactly quantified) by the sim-
ple expression (3), and furthermore that the pre-existing
quantification (1) can be unreliable.

3. MAIN RESULT

It is also important to emphasise that a crucial aspect
of this paper is the recognition of the need to carefully

consider the relationship between the model order m for
which a variance error quantification is required and any
underlying ‘true’ system order. Indeed, given the usual
complexity of real-world dynamics, any assumption the
existence of a true model order could be quite inappropri-
ate.

In relation to this issue, the work here takes the per-
spective that, while on the one hand it is reasonable to
assume that undermodelling-induced error decreases with
increasing model order m, it is also reasonable to assume
that the model order of interest has not surpassed an un-
derlying true order, and hence does not imply pole-zero
cancellations in the (asymptotic in N ) estimated system.

This last premise is considered to be a realistic way of
avoiding the supposition of a true model order, while still
considering that some sort of model validation procedure,
that checks for the appropriateness of an Output–Error
structure (eg. in terms of residual whiteness), and at the
very least checks for pole-zero cancellation, is part of an
overall estimation and error-quantification process.

With these preliminary comments in mind, the following
Theorem and Corollary provide formal statements of the
main technical results of this paper.

Theorem 3.1. Suppose that θ̂n
N is calculated via (6) using

the Output-Error model structure (4) so that m = n/2
and that the resultant asymptotic in N estimate G(z, θn

◦ )
defined via (7) has poles {ξ0, · · · , ξm−1} all lying in a
closed subset of the open unit disk D. Then with

Km(ω) ,

m−1∑

k=0

1 − |ξk|2
|ejω − ξk|2

(16)

and in the limit as N → ∞
√
N

[
K−1/2

m (ω) 0

0 K−1/2
m (λ)

] [
G(ejω , θ̂n

N ) −G(ejω , θn
◦ )

G(ejλ, θ̂n
N ) −G(ejλ, θn

◦ )

]

D−→ N (0,Σm(ω, λ))

where provided

(1) {ut} is quasi-stationary with Φu(ω) ∈ Lip(α) for
some α > 0;

(2) G(z, θn
◦ ) contains no pole-zero cancellation for any

model order m = n/2;
(3) Certain bounds quantifying how much {εt(θ

n
◦ )} dif-

fers from white noise are satisfied (Ninness and
Hjalmarsson 2001a),

then for ω 6= λ

lim
m→∞

Σm(ω, λ) = 2σ2

[
Φ−1

u (ω) 0
0 Φ−1

u (λ)

]
. (17)

Proof: See (Ninness and Hjalmarsson 2001a).

The implication of this result is that since it asserts that

lim
m,N→∞

√
N

Km(ω)

[
G(θ̂n

N ) −G(θn
◦ )

]
∼ N

(
0,

2σ2

Φu(ω)

)

then one could expect that the equality should nearly hold
for finite m and N so that



G(ejω , θ̂n
N ) −G(ejω , θn

◦ ) ∼ N
(

0,
2σ2

N

Kn(ω)

Φu(ω)

)

and

E
{
|G(ejω , θ̂n

N ) −G(ejω , θn
◦ )|2

}
≈

2

N

σ2

Φu(ω)

m−1∑

k=0

1 − |ξk|2
|ejω − ξk|2

. (18)

are good approximations.

However, in many applications, it may be very unap-
pealing that quantifications like (18) depend on asymp-
totic in model order m arguments. In response to this, it
is in fact possible to provide expressions that are valid
for arbitrarily small m, but (in general) at the expense
of more restrictive assumptions; see also(Ninness and
Hjalmarsson 2001b).

Corollary 3.1. Under the conditions imposed in Theo-
rem 3.1, together with further assumptions that

(1) Φu(ω) = κ a constant;
(2) {εt(θ

n
◦ )} is a zero mean i.i.d. process of variance σ2

then

lim
N→∞

NE
{
|G(ejω , θ̂n

N ) −G(ejω , θn
◦ )|2

}
=

2σ2

κ
Km(ω).

Proof: See (Ninness and Hjalmarsson 2001a).

That is, in the case of white input excitation Φu = κ, then
the accuracy of the quantification

E
{
|G(ejω , θ̂n

N ) −G(ejω , θn
◦ )|2

}
≈ 2σ2

Nκ
Km(ω)

=
2σ2

Nκ

m−1∑

k=0

1 − |ξk|2
|ejω − ξk|2

depends only on the amount N of data. It is therefore
applicable for arbitrarily low model order, as will be
illustrated in the following simulation section.

4. SIMULATION EXAMPLE

These studies are organised according to the type of
system simulated, the colouring of the input spectrum
and the amount N of observed data. In particular, the
following systems are considered.

System1: Low-Order

G(q) =
0.1

(q − 0.9)
,

System2: Mid-Order

G(q) =
0.06(q − 0.8)(q − 0.9)

(q − 0.99)(q − 0.7)(q − 0.6)
,

System3: Low-Order Resonant

G(q) =
0.0342q+ 0.0330

(q − 0.95ejπ/12)(q − 0.95e−jπ/12)
,

Sys
Input Spectrum

Coloured White
N = 10000 N = 200 N = 10000 N = 200

1 Fig 1(a) Fig 1(b) Fig 2(a) Fig 2(b)
2 Fig 3(a) Fig 3(b) Fig 4(a) Fig 4(b)
3 Fig 5(a) Fig 5(b) Fig 6(a) Fig 6(b)
4 Fig 7(a) Fig 7(b) Fig 8(a) Fig 8(b)

Table 1. Organisation of Simulation Examples

System4: Mid-Order Resonant

G(q) =
0.1176(q+ 8.0722)(q + 0.8672)(q + 0.0948)

(q − 0.75e±jπ/3)(q − 0.95e±jπ/12)
.

For each of these systems, two cases of input spectrum are
examined

Φu(ω) =
1

1.25− cosω
and Φu(ω) = 1

and for each of these spectra, both long (N = 10, 000)
and short (N = 200) data lengths are employed.

For all these situations, white Gaussian measurement
noise of variance σ2 = 0.0001 is added, and an Output–
Error model of order equal to the true system is fitted over
10000 different input and measurement noise realisations.
This allows the computation of the true estimate vari-
ability via sample average over these Monte–Carlo sim-
ulations, which is then compared to the new expression
(3) as well as the pre-existing one (1) in figures 1–8 and
according to the organisation given in table 1.

In each of these figures, (the estimate of) the true variabil-
ity is shown as a solid line, the new variance expression
(3) of this paper is shown as a dashed line, and the pre-
existing approximation (1) is illustrated via a dash-dot
line. The examination of all these examples reveals some
important points.

Firstly, the new approximation (3) is clearly quite robust.
It provides an informative quantification across the full
range of scenarios, even for the case of very low model
orderm = 1 and very low data lengthN = 200 as shown
in figure 1(b).

Secondly, as shown in the cases of white input, the new
approximation (3) is essentially exact in these cases re-
gardless of model order, save for small errors at very low
data lengths. This, of course, is consistent with Corol-
lary 3.1.

Thirdly, as illustrated in the case of resonant systems,
even when the true variability has a quite complicated
nature, the new approximation (3) is able to provide an
informative, and in most cases accurate quantification.

Finally, as suggested by examination of the dash-dot line
representing (1) in each of figures 1–8, that pre-existing
and widely used quantification can be unreliable, which
leads to the suggestion of this paper that in fact it should
be replaced by (3).
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Fig. 1. System 1, very low-order. True variability is solid
line, new quantification (3) is the dashed line, and
the existing quantification (1) is the dash-dot line.
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(b) Low-Order, White Φu,
N = 200

Fig. 2. System 1, very low-order. True variability is solid
line, new quantification (3) is the dashed line, and
the existing quantification (1) is the dash-dot line.
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(b) Mid-Order, Coloured Φu,
N = 200

Fig. 3. System 2, mid-order. True variability is solid line,
new quantification (3) is the dashed line, and the
existing quantification (1) is the dash-dot line.
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(b) Mid-Order, White Φu,
N = 200

Fig. 4. System 2, mid-order. True variability is solid line,
new quantification (3) is the dashed line, and the
existing quantification (1) is the dash-dot line.
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(a) Low-Order Resonant,
Coloured Φu, N = 10, 000
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(b) Low-Order Resonant,
Coloured Φu, N = 200

Fig. 5. System 3, low-order resonant. True variability is
solid line, new quantification (3) is the dashed line,
and the existing quantification (1) is the dash-dot
line.
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(a) Low-Order Resonant,
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(b) Low-Order Resonant,
White Φu, N = 200

Fig. 6. System 3, low-order resonant. True variability is
solid line, new quantification (3) is the dashed line,
and the existing quantification (1) is the dash-dot
line.
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Fig. 7. System 4, mid-order resonant. True variability is
solid line, new quantification (3) is the dashed line,
and the existing quantification (1) is the dash-dot
line.

10
−3 10

−2 10
−1 10

0 10
1

−85

−80

−75

−70

−65

−60 Variance of OE estimate of G vs existing and extended Theory

Frequency (normalised)

V
a

ri
a

n
c
e

 (
d

B
)

Sample Variability
New Theory
Exisiting Theory

(a) Mid-Order Resonant,
White Φu, N = 10, 000

10
−3 10

−2 10
−1 10

0 10
1

−85

−80

−75

−70

−65

−60 Variance of OE estimate of G vs existing and extended Theory

Frequency (normalised)

V
a

ri
a

n
c
e

 (
d

B
)

Sample Variability
New Theory
Exisiting Theory

(b) Mid-Order Resonant,
White Φu, N = 200

Fig. 8. System 4, mid-order resonant. True variability is
solid line, new quantification (3) is the dashed line,
and the existing quantification (1) is the dash-dot
line.

5. CONCLUSIONS

This paper is closely related to one by the same au-
thors (Ninness et al. 1999a) where the same estimation
problem was considered and the dependence of variance
error on system poles was established.

The key advancement made here is to establish the new
factor of 2 in the variance quantification (3). There are
two main reasons for the significance of this development.
First, it resolves the paradox inherent in previous variance
quantifications which predicted no benefit in knowing
system poles rather than having to estimate them.

Second, the method used to establish the factor of 2,
which is developed in detail in (Ninness and Hjalmarsson
2001a), invents new techniques for handling quadratic
forms in inverses of Toeplitz matrices via properties of
reproducing kernels. Of itself, this is important since it
allows for variance quantifications that are not asymptotic
in the model order; see Corollary 3.1 and (Ninness and
Hjalmarsson 2001b).

Finally, this paper also presents more extended simula-
tion results further validating the need (previously raised

in (Ninness et al. 1999a)) for incorporating knowledge of
estimated system poles in variance error quantifications.
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