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Abstract: In the synthesis of tracking control systems, the compensation signal, which is
applied in the finite-horizon time, is effective for improving the performance of controlled
system. In this paper, a design method of finite-horizon compensation signal and optimal
internal state of controller are discussed for stabilized systems. By characterizing the singular-
value problem for correspondingly defined Hankel operator, it is shown that the internal
state and the compensation signal, which attains favorable transient, is constructively given
based on the combination of singular vectors. The strength and the limitation of applying the
compensation signal are illustrated with numerical examples.

Keywords: compensation law, initial value setting, servo-mechanism

1. INTRODUCTION

In the synthesis of tracking control systems, the com-
pensation signal and initial value setting, which are
applied in the finite-horizon time, are effective for
improving the performance of controlled system. In
this view point, various compensation method are dis-
cussed: a design method of preview compensation sig-
nal for attenuating the error to a target signal(Hayase,
et al., 1969; Tomizuka, 1975), a feed-forward com-
pensation and an initial value of controller (Ikeda, et
al., 1988; Egami, et al., 1990).
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Fig. 1. Servo-mechanism with compensation

In this paper, a design method of finite-horizon com-
pensation signal and optimal internal state of con-
troller is discussed for stabilized systems. Clarifing the
relation of the input/output signal and internal state of

the system, we provide a design method of the com-
pensation signal for the tracking problem. Let us first
highlight out problem with a simplified problem (Fig.
1). In the servo system Fig. 1, r denotes the reference
signal and y denotes the output response driven by r.
In order to obtain required output transient yr, it is
effective to set the initial value v0 of integrator and
introduce a compensation input v1 together with the
reference signal r. The generalized design problem of
compensation signals is depicted in Fig. 2. The objec-
tive here is to design

�
v0 � v1 � in order to generate the

response zr. If the relation of the compensation input�
v0 � v1 � and zr is clarified, the calculation of

�
v0 � v1 � is

possible to generate the required output response zr.

In the following, we clarify the relations between
compensation input

�
v0 � v1 � and the output z based on

the input-output mapping, then we derive the design
method of compensation law. In Fig. 1, v0 denotes
the internal state of controller and v1 denotes preview
compensation input in the finite-horizon. Finally, we
investigate the effectiveness of the compensation law
with numerical examples.

2. FORMULATION

Define the controlled system Σ (Fig. 2):
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Fig. 2. System with compensation

Σ :

�
ẋ
�
t ��� Ax

�
t �
	 Dv

�
t �

z
�
t ��� Ex

�
t � � (1)

v
�
τ ��� �

v1

�
τ � 0 � τ � h

0 h 
 τ �
where v1

�
t ��� L2

�
0 � h;Rm � is a compensation input

in the finite-horizon � 0 � h � , x
�
t ��� Rn, z

�
t ��� Rp are

the state, the output respectively. The initial value of
system Σ is described by

x
�
0 ��� Vv0 � V � Rn � r � (2)

where v0 � Rr is an operatable part of the state. We
make following assumptions for matrices A � D � E.

(A1) A is stable.

(A2)
�
E � A � D � is observable and controllable.

We define the compensation law
�
v0 � v1 � in Hilbert

space Rr � L2

�
0 � h;Rm � . v0 � Rr is an operatable initial

state and v1 � L2

�
0 � h;Rm � is compensation input.

By introducing the compensation signal
�
v0 � v1 � , the

system response of (1) can be improved in the follow-
ing points:

(1) transfer the state x
�
h � to obtain the required re-

sponse

(2) reform the response z � 0 � h � in � 0 � h �
So we define the required response by

ẑ : ��� Fx
�
h �

z � 0 � h ��� ����� (3)� : � Rn � L2

�
0 � h;Rp � �� : � Rn � L2

� � h � 0;Rl � is a Hilbert space endowed
with the inner product:!

ψ � φ "$# : � ψ0Tφ 0 	 h%
0

ψ1T �
β � φ 1 � β � dβ � (4)

ψ � � ψ0

ψ1 � � φ � � φ 0

φ 1 � ���&�
where F � Rn � n is defined by the solution M � : FTF
to the equation

MA 	 ATM 	 ETE � 0 � (5)

Since M is an observability gramian of the system (1),
the equality

'
ẑ
' 2# � h%

0

zT �
t � z � t � dt 	 xT �

h � Mx
�
h �

� ∞%
0

zT �
t � z � t � dt � '

z
' 2

L2 ( 0 � ∞;Rp ) �
holds for the evaluation of system response.

In the following, we denote the required response by
ẑr �*� and clarify the design method of compensation
law which satisfies the condition:+

ε , 0 :
'
ẑr

� ẑ
' # � ε � (6)

3. COMPENSATION LAW AND OUTPUT

In this section, we elaborate the relation between the
compensation law and the response based on input-
output mapping. The compensation law and the output
are expressed by the singular values/vectors of Hankel
operator. In the same manner to (3),(4), we denote the
compensation law of system Σ by

v̂ : ��� v0
v1 � �.-/�0- : � Rr � L2

�
0 � h;Rm � � (7)

and define the Hilbert space - endowed with the inner
product:!

ψ̂ � φ̂ "21 : � ψ̂0Tφ̂ 0 	 h%
0

ψ̂1T �
β � φ̂ 1 � β � dβ (8)

ψ̂ � � ψ̂0

ψ̂1 � � φ̂ � � φ̂ 0

φ̂ 1 � �3-/�
The relation between v̂ and ẑ are described by

ẑ � Γv̂ � Γ �54 � -/���6� � (9)� �
Γv̂ � 0�

Γv̂ � 1 � ξ � �
: �

78888889 F :; eAhVv0 	 h%
0

eA ( h < β ) Dv1 � β � dβ =>
E :; eAξVv0 	 ξ%

0

eA ( ξ < β ) Dv1 � β � dβ =>
?A@@@@@@B � (10)

v̂ � �
v0 � v1 �C�.- �

0 � ξ � h �D�
We first provide a solution to the singular value prob-
lem of Γ and clarify the relation between the achiev-
able output and compensation law. For the operator
Γ �E4 � -/�2�F� , the singular value σ , 0 and vectors�

f � g �
σg � Γ f � σ f � Γ

�
g � f G� 0 � g G� 0 � (11)

are obtained by the following theorem.



Theorem 1. The singular value σi of Hankel operator
Γ is given by the roots of transcendental equation

det

�IH � σ < 1M I J eJ ( σ ) h � σ < 1W
I �LK � 0 � (12)

J
�
σ � : � � A σ < 1DDT� σ < 1ETE � AT � �

W : � VV T �
where matrix M , 0 is the solution to (5). And further,
corresponding singular vectors

�
fi � gi � are given by

f 0
i � V Tui � (13)

f 1
i
�
β �M� H

0 DT J eJ ( σi
) β � σ < 1

i W
I � ui � (14)

0 � β � h �
g0

i � H
F 0 J eJ ( σi

) h � σ < 1
i W

I � ui � (15)

g1
i
�
ξ ��� H

E 0 J eJ ( σi
) ξ � σ < 1

i W
I � ui � (16)

0 � ξ � h �
where nonzero vector ui G� 0 is defined byH � σ < 1

i M I J eJ ( σi
) h � σ < 1

i W
I � ui � 0 � (17)

The proof of Theorem 1 is found in (Izumi, et al.,
1997).

The singular values and vectors of operator Γ clarify
the relations between input and output signals. In
order to generate the output ẑ � gi, the input v̂ � 1 N σi O
fi is required by (11). In Theorem 2, we show the
characteristics of Γ. The proof is omitted.

Theorem 2. The operator Γ ��4 � -/���6� has follow-
ing properties.

(a) The singular values σ1 σ2 O2OPO σi converge to zero,

and
∞

∑
i Q 1

σ2
i 
 ∞ where σ1 R σ2 R OPO2O R σi R O2OPO , 0

(b) S fi T � fi �U-V� , S gi T � gi �W�F� are an orthogonal
basis. S gi T is complete in � .

In the sequel, we normalize the singular vectors by'
fi

' 1 � '
gi

' # � 1
�
i � 1 � 2 � O2OPO �

4. THE DESIGN OF COMPENSATION LAW

The input and output signals are decomposed by the
singular vectors

�
fi � gi � . To obtain the output gi, v̂ �

1 N σi O fi is required since σg � Γ f holds. By evaluat-
ing the costs of the input with norm

'
v̂
' 1 , Hence, in

order to generate the output ẑ which satisfies (6), we
can design the signal v̂ by the combination of singular
vectors. The design method is obtained as follows.

Theorem 3. Let αi : � !
ẑr � gi "$# �

i � 1 � 2 � O2OPO � for given
zr and N is an integer number such that the inequalities
(18), (19) hold. '

ẑr
' 2# � N < 1

∑
i Q 1

α2
i , ε2 (18)'

ẑr
' 2# � N

∑
i Q 1

α2
i � ε2 (19)

Then the compensation signal

v̂ � N

∑
i Q 1

αi

σi
O fi (20)

satisfies the condition (6).

Proof Using the fact the output is given by

ẑ � Γv̂ � N

∑
i Q 1

αigi � (21)

we verify that (6) holds. From (21) and Theorem 2,'
ẑr

� ẑ
' 2# � '

ẑr
� N

∑
i Q 1

αigi

' 2#� '
ẑr
' 2# 	 N

∑
i Q 1

α2
i
� 2

N

∑
i Q 1

αi

!
ẑr � gi " #� '

ẑr
' 2# � N

∑
i Q 1

α2
i � ε2 (22)

is obtained. Therefore'
ẑr

� ẑ
' #�� ε (23)

holds for given zr.

By Theorem 3, for the case that the controlled system
is relaxed, the relations of compensation law and the
required output is clarified. In the design of compen-
sation law, we shall pay the attention, because the
magnitude of input signals comes larger as many fi
is adopted into the compensation law.

In the next section, we extend the previous results
for the case that the controlled system has the initial
values.

5. THE CASE OF NONZERO INITIAL VALUE

If we design the compensation law for the case that the
controlled system has an initial values, the compensa-
tion law can improve the performance of controlled
system for the more general case.
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Fig. 3. System with compensation

In this section, we define the controlled system which
has the initial value and construct the design method of
the compensation law. Consider the controlled system
depicted in Fig. 3:

Σ :

�
ẋ
�
t ��� Ax

�
t �
	 Dv

�
t �

z
�
t �M� Ex

�
t � � (24)

v
�
τ ��� �

v1

�
τ � 0 � τ � h

0 h 
 τ �
x
�
0 ��� x0 	 Vδv0 � (25)

x
�
t �Z� Rn � z

�
t �[� Rp � v

�
t �C� Rm �

where x
�
t �\� Rn is the state, z

�
t �]� Rp is the output,

v
�
t ��� Rm is the input for the compensation input

v1 � L2

�
0 � h;Rm � . In the initial value x

�
0 � , x0 denotes

the initial value of the plant and δv0 denotes the
additional change, which is designed to improve the
response. The controlled system Fig. 3 is equivalently
represented by Fig. 4. In Fig. 4(a), the system in
upper block generates the output zi by the initial value
x0, the system in lower block generates the output e
by controller’s initial value and compensation input�
δv0 � v1

� O �2� . Splitting the controlled system Σ by the
input and initial value, and re-defining the required
output as er � zr

� zi, the problem that z pursue zr is
represented by the problem that e pursue er.
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Fig. 4. Signal redefinition

Lemma 4. In the case that the system Σ (24) has initial
value x0, the design method of compensation law v̂ ��
δv0 � v1

� O �2� is obtained as follows.

Step 1 Devide the output ẑ of Σ into the signals: ẑi is
genearted by x0 and ê is generated by v̂.

ẑ � ê 	 ẑi

ê � Γv̂

ẑi �^� FeAhx0
EeAβ x0 �

Step 2 Along with the representation (3), re-define
the required output as êr for the output ê

êr � ẑr
� ẑi�^� F
�
xr

�
h � � eAhx0 �

zr
�
β � � EeAβ x0 � ��� (26)

ẑr � � Fxr
�
h �

zr
� O � � ���

Step 3 By Theorem 3, the compensation law v̂ is
obtained by

v̂ � N

∑
i Q 1

αi

σi
O fi (27)

where αi � !
êr � gi "$# .

6. NUMERICAL EXAMPLE

v0 or δv0

v1

1( s _ 2 ) ( s _ 4 )8
src � y

Fig. 5. Servo system

In this section, we investigate the effectiveness of the
compensation law for the servo system in Fig. 5(Saito,
et al., 1998). The compensation law is designed by
Theorem 3, Lemma 4.

Fig. 6 shows the outputs: the required output and
step response without the compensation. The required
output yr is described by (28).
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Fig. 6. Step response and required response
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Fig. 8. Responses y
� O � (A)
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(28)

The servo system in Fig. 5 has the poles � 4 � 65,� 0 � 68 b 1 � 13 j, the step response rises slowly and has
overshoot. For the servo system Fig. 5, we discuss the
effectiveness in the folowing two cases.

(A) the compensation input from t � 0 to t � 5, set
the state of integrator at t � 0.

(B) the compensation input from t � 2 to t � 5, set
the state of integrator at t � 2.

The case (B), where the controller state is reset, is
equivalent to the nonzero initial value case in Section
5

For the case (A), the results are shown in Fig. 7, 8.
The compensation input v1 is depicted in Fig. 7, where
v1 is constructed by the N � 2 � 4 � 6 singular vectors.
Corresponding to N, the initial state v0 (t � 0) of
the integrator is set to 0 � 162 � 0 � 100 � 0 � 0971. As the
number of the singular vector is increased for 2, 4, 6,
the compensation intput v1 is larger in Fig. 7.

The output y is obtained in Fig. 8. The solid line shows
the step response without the compensation, the dash-
dotted line is the required response, the dashed lines
are with the compensation

�
N � 2 � 4 � 6 � . In Fig. 8, the

responses with the compensation rise quickly than the
no-compensation case and have low overshoot. As the
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Fig. 9. Compensation inputs v1
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Fig. 10. Responses y
� O � (B)

number of the singular vector increases, the response
comes to meet the required response.

Nextly, we investigate for the case (B). The results
are shown in Fig. 9, 10. The compensation input v1
is in Fig. 9, where v1 are constructed with 2 � 4 � 6
singular vectors respectively. Corresponding to N, the
initial state δv0 (t � 2) of the integrator is changed
by � 0 � 211 � � 0 � 210 � � 0 � 208. As the number of the
singular vector increases, the compensation intput v1
become larger in Fig. 9.

The output y is obtained in Fig. 10. The solid line
shows the step response without the compensation, the
dash-dotted line is the required response, the dashed
lines are with the compensation

�
N � 2 � 4 � 6 � . In Fig.

10, the outputs with the compensation are improved
from t � 2 and have low overshoot.

In the case (B), the response is well improved in
spite of short input period compensation. Thus, it
is important to discuss the time when the state of
the integrator is changed and the time interval of
compensation input.

7. CONCLUSION

In this paper, a design method of finite-horizon com-
pensation signal and optimal internal state of con-
troller are discussed for stabilized systems. Firstly, we
derive the design mothod of compensation law based



on the relation of input/output signal of stabilized
system. And the result is extended for the case that
the controlled system has a nonzero initial value; to
move the state of running plant. For the actual design
of compensation law, we should discuss changing the
state from the view point of hardware. In the numerical
examples, the time of compensation input and moving
the state has the large influence. The decision method
of the time of compensation input and moving the state
should be discussed in the future.
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