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1. INTRODUCTION

The commissioning of an indirect field oriented con-
trol (IFOC) drive requires the knowledge of the ro-
tor time constant, a parameter that can vary widely
in practice (Krishnan and Doran, 1987; Marinoet
al., 1993) and is known to cause performance and
stability problems. It has been shown that the speed
control of induction motors through IFOC is glob-
ally asymptotically stable for any constant load torque
if the rotor time constant is perfectly known or the
error in its estimation is sufficiently small (De Wit
et al., 1996; Bazanella and Reginatto, 2000). In a
previous paper (Bazanella and Reginatto, 2000) we
also showed that saddle-node bifurcations occur for
certain values of the mismatch in this estimation and
certain load conditions. Another possible mechanism
for loss of stability, namely, the occurrence of Hopf
bifurcations, has been considered in (Bazanella and
Reginatto, 2001; Bazanellaet al., 1999; De Wit et
al., 1996; Espinosa-Perezet al., 1998). Contrary to
saddle-node bifurcations, this mechanism of loss of
stability depends on the settings of the speed control
loop (De Witet al., 1996; Espinosa-Perezet al., 1998;
Bazanellaet al., 1999). In the recent works (Reginatto
and Bazanella, 2000; Bazanellaet al., 2000), effec-
tive results have been provided to analyze the global
asymptotic stability property of IFOC drives. Also in
this case, the setting of the PI speed loop controller
plays a fundamental role on the size of the region on

the parameter space where the IFOC drives exhibits
this important property.

This set of results elucidates the influence of all rel-
evant tunable parameters in an IFOC drive on its
stability properties. In this paper we provide experi-
mental results that confirm and further clarify these
theoretical findings. On the base of these results, we
provide useful guidelines for the setting of the tunable
parameters in the commissioning of an IFOC drive.
The guidelines are intended for a design that keeps
all possible instability mechanisms far enough from
a practical operating region in the parameter space.

The paper is organized as follows. In Section 2 the
system modeling and the control equations are given
and some additional convenient notation and concepts
are introduced. Analysis and experimental verification
of saddle-node bifurcations are presented in Section 3.
Results regarding Hopf bifurcations are presented in
Section 4. Based on these results, in Section 5 we
derive guidelines for setting the estimate of the rotor
time constant and the parameters of the PI speed
controller in order to guarantee stability of the system
for practical parameter mismatches.
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2. PRELIMINARIES

2.1 Systemmodeling

Weconsidertheindirectfield orientedcontrol(IFOC)
of induction motor drives. Field orientedcontrol is
usually employedas a meansto achieve high per-
formance transient responsein speed,position, or
torquecontrol.Theimplementationof IFOC employs
statorcurrent control, i.e., the induction machineis
currentfed, andallows threecontrol inputs,namely:
ids, the direct axis statorcurrentcomponent;iqs, the
quadratureaxis stator current component;and ωsl,
theslip frequency (Novotny andLorenz,1986;Leon-
hard,1985).

IFOC consistsin setting ωsl and a specific initial-
ization procedurein the attemptto achieve a control
decouplingbetweenids andiqs, thefirst actingon the
rotor flux level, while the later acting on the devel-
opedtorque.Morespecifically, wehave(Novotny and
Lorenz,1986;DeWit etal., 1996):

ωsl
� ĉ1

iqs

ids
(1)

ids
� u0

2 (2)

where ĉ1 is an estimatefor the inverse rotor time
constantc1

� Rr
Lr

, Lr being the rotor inductanceand

Rr therotor resistance,andu0
2 is someconstantwhich

definestherotorflux level.

In speedregulationapplications,usuallyaPI regulator
is usedto acton theremainingcontrol input iqs,

iqs
� kpew

�
ki

t�
0

ew � ζ � dζ (3)

wherekp andki arethegainsof thePI speedcontroller
andew

� wref � w is therotorspeederror.

If ĉ1
� c1, that is, if we have a perfectestimateof the

rotor time constant,we saythat the control is tuned,
otherwiseit is said to be detuned.Accordingly, we
define

κ ∆� ĉ1

c1
(4)

asthe degreeof tuning. It is clearthat κ � 0 andthe
control is tunedif andonly if κ � 1.

By choosingstatevariables� x1 	 x2 	 x3 	 x4 
 � � λqr 	 λdr 	 ew 	 iqs
 ,
we obtainthe inductionmotor modelunderfield ori-
entedcontrol (1)-(2) andPI speedregulation (3) de-
scribedas:

ẋ1
� � c1x1

�
c2x4 � κc1

u0
2

x2x4 (5)

ẋ2
� � c1x2

�
c2u0

2
� κc1

u0
2

x1x4 (6)

ẋ3
� � c3x3 � c4 � c5 � x2x4 � u0

2x1 � � Te
 (7)

ẋ4
� kcx3 � kpc4 � c5 � x2x4 � u0

2x1 � � Te
 (8)

whereλqr and λdr standfor the quadratureand di-
rect axiscomponentsof the rotor flux; Tm is the load
torque,which is assumedconstant;c1 to c5 are ma-

chineparameters;andwe have definedkc
∆� ki � kpc3

andTe
∆� Tm

� c3
c4

wref .

It is easyto show that for position regulationwith a
proportional-derivative controller the samemodel is
obtainedafter a changeof variables,so that all the
resultsderived for speedregulationarealsovalid for
positionregulation.

2.2 Thetunedsystem

A constantrotor flux must be establishedinside the
motorbeforethesystemcanbeoperated.Thisis called
themagnetizationphaseof IFOC, andis achievedby
settingids

� u0
2 andwref

� 0 with themotor in stand-
still condition.The steady-statereachedunderthese
conditionsis givenby x � xo � � 0 	 c2

c1
u0

2 	 0 	 0
�� , which
is consideredtheinitial statefor IFOC operation.

In the tunedcase,κ � 1, themodel(5)-(8) simplifies
considerably. First,noticethatstartingfrom x � 0 � � xo,
the fluxes x1 and x2 remain constantfor all times,
regardlessof the behavior of x4. Now, taking this
into account,the remainingequations(7)-(8) can be
rearrangedas

ẋ3

ẋ4 � ������ � c3 � c4c5c2u0
2

c1� ki � kpc3 � � kpc4c5c2u0
2

c1

����� 
x3

x4 �� 
c3 c4

kpc3 kpc4 �  wref

Tm � (9)

which is a second-orderlinear system.We shall refer
to thedynamicsystem(9) asthe tunedsystem, which
is usuallytakenasabasefor settingthePI gains.

The tunedsystemjust definedrepresentsan ideal sit-
uation,in which perfectfield-orientationis achieved.
Under this condition optimal performancecan be
achieved, and the PI speedcontroller is set for the
desiredperformance.Sincein this casethecontrolled
systemis linear and of order two, the tuning of the
PI controller under the assumptionof perfect field-
orientationis simple, and in theory arbitrary perfor-
mancecanbeachieved.

From(9), theclosed-loopeigenvaluesaretherootsof
thecharacteristicpolynomial

pT � λ � � λ2 � � c3
�

kpK � λ � kiK (10)

whereK
∆� c2c4c5u0

2
c1

. Then the PI parameterskp and
ki canbe chosento arbitrarily assignthe closed-loop



eigenvaluesof the tunedsystem.Indeed,let the de-
siredclosed-loopcharacteristic(Hurwitz) polynomial
bewritten as

λ2 � a1λ � a0 	 a0 � 0 	 a1 � 0 (11)

Then,equatingthecoefficientsin (10)and(11) yields

kp
� a1 � c3

K 	 ki
� a0

K
(12)

Oncetheclosed-looppolesarechosentheparameters
kp andki canbecalculatedfrom (12).

3. SADDLE-NODEBIFURCATION

3.1 Analysis

Let us definethe dimensionlessvariablesr
∆� xe

4
u0

2
and

r
� ∆� Tec1

c5c2 � u0
2 � 2 . The constantr

�
representsthe system

loading,sinceit is proportionalto theelectricaltorque
developed in steady-state.The parameterr can be
shown to satisfy the third-orderpolynomialequation
(BazanellaandReginatto,2000)

κr3 � r
�
κ2r2 � κr � r

� � 0 (13)

andtheequilibriacanbewritten as

���� xe
1

xe
2

xe
3

xe
4

����� � ��������
c2u0

2

c1

1 � κ
1
� κ2r2 r

c2u0
2

c1

1
� κr2

1
� κ2r2

0
u0

2 r

��������� (14)

The completecharacterizationof the equilibria, as
given by the polynomial equation(13), is illustrated
in Figure2 (BazanellaandReginatto,2000).Thetwo
curves, on the � κ 	 r � � parameterspace,delimit the
region where equation(13) has 3 real solutions(3
equilibrium points).For any point outsidethe region
we have a uniqueequilibriumpoint. Thepoint where

the two curvesintersectis κ � 3 	 r
� ��� 3

3 . Thus,we
haveauniqueequilibriumpoint for any loadcondition
if andonly if κ � 3.

If the load and/orthe degreeof tuning are modified
gradually starting from the tuned condition, then a
saddle-nodebifurcationoccurswhenoneof the lines
in figure 2 is crossed.The branchingdiagram for
κ � 4 is presentedin Figure3. If theloadis increased
gradually, whenthesaddle-nodebifurcationis reached
a jump will occur in current,bringing it to another
equilibrium wherethe currentlevel is morethanfive
timeslarger.
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Fig. 2. Branchingdiagramfor κ � 4.

Table1. Motor data.

Ratedpower 1
3 hp

Ratedfrequency 60 Hz
Ratedvoltage 380V
Ratedcurrent 0 � 8 A
c1 50 s� 1

c2 25 Ω
c3 0 � 54 s� 1

c4 714kg� 1m� 2

c5 2 � 84

3.2 Experimentalresults

Experimentalresults are obtained in a current-fed
IFOC drive with a DC generatorproviding the load.
By varyingtheelectricalloadof theDC generatorthe
mechanicalloadof thedrive is varied,alwaysgetting
a loadtorqueproportionalto thedrivespeed.Datafor
theexperimentalsettingaregivenin Table1

A saddle-nodebifurcationfor κ � 4canbeobservedin
theexperimentalresultsshown in figures4-5.We can
not guaranteethe exact valueof κ becausewe don’t
have a perfectestimateof c1 for this operatingcondi-
tion. The field currentand load of the DC generator
are set at a constantlevel suchthat the steady-state
electricaltorqueandthereforethe equivalentload r

�



aresignificantlyincreasedby increasingthereference
speed.Thedirectaxiscurrentis setatu0

2
� 0  4 A.

As the referencespeedis increased,the equivalent
load r

�
also increases,eventually reachingthe point

where a jump in current occurs,at t � 4 s. Since
thefinal valueof thecurrentis muchabove nominal,
motor protectionis activated,current drops to zero
andthemotorgoesto stall. It canbeseenin figure4
thatthecurrentspecifiedby thespeedcontrollerdoes
jump,althoughtheactualcurrenttendsto zerodueto
actuationof theprotection.
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Fig. 3. Speedreferencestepsuntil saddle-nodebifur-
cation: referenceand measuredquadraturecur-
rent.
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Fig. 4. Speedreferencestepsuntil saddle-nodebifur-
cation:referenceandmeasuredspeed.

We alsoprovide resultswith κ � 1 in figures6-7. It
canbe seenthat the jump for κ � 4 hasoccurredat
the laststepof referencespeed.Theaveragevalueof
the quadraturecurrentin this operatingconditionfor
κ � 1 is measuredasiq � 0  166A, whichcorresponds
to r

� � 0  415. The jump is observed before the bi-
furcationactuallyoccurs,at a point wherethe lower
equilibrium point in thebranchingdiagramin Figure
3 still existsbut its regionof attractionis verysmall.
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Fig. 5. Speedreferencestepsin the”tuned” condition:
measuredquadraturecurrent.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

time (ms)

sh
af

t s
pe

ed
 (

ra
d/

s)

Fig. 6. Speedreferencestepsin the”tuned” condition:
referenceandmeasuredspeed.

4. HOPFBIFURCATIONS

4.1 Analysis

A Hopf bifurcation characterizesan equilibrium be-
comingunstableby thecrossingof the jω axisby two
complex conjugateeigenvaluesof thejacobian.In the
importantcaseof zeroload operation,a closedform
condition for existenceof Hopf bifurcationscan be
derivedasfollows (Bazanellaet al., 1999;Bazanella
andReginatto,2001).

Lemma1. Let c3 ! 0 and Tm ! 0. Then, no Hopf
bifurcationtakesplacefor any κ � 0 providedthata0,
a1 satisfytherelation

a0 " a1 � c1
�

a1 � (15)

If condition15is notsatisfied,thenaHopf bifurcation
takesplaceat

κ � κh
∆� a0 � c1

�
a1 �

c1 � a0 � a1 � c1
�

a1 �#� (16)$
Condition (15) is satisfiedwhenever the closed-loop
eigenvalues for the tuned systemare chosento be



real. If complex closed-loopeigenvaluesaredesired,
thenthe imaginarypart hasto be chosensufficiently
small in order to satisfy (15). Figure 8 illustrates
the situation for the complex eigenvaluescase,i.e.,
λ1 % 2 � � σ & jω. The value of κh is plotted as a
function of σ ' c1 and jω ' c1, thenormalizedreal and
imaginarypartof thechoseneigenvaluesfor thetuned
system,respectively. Thefigurealsoshowstheregion,
in the � σ 	 jω � plane,whereno Hopf bifurcationtakes
placefor any κ. We canseethat κh approaches∞ at
the boundaryof that region andrapidly decreasesto
practicalvaluesasthedampingis decreased.
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Fig. 7. Parameterchartfor the zeroload case.Tuned
systemeigenvaluesλ1 % 2 � � σ & jω. Thedashed
region in the � σ 	 jω � planeillustratesthe region
wherenoHopf bifurcationtakesplacefor any κ.

4.2 Experimentalresults

Experimentalresultsareprovided for a given setting
of the speedloop. The PI controller is set as kp

�
4  7E � 3 Asandki

� 0  1 A. Severalexperimentshave
beenperformedundernoload,with differentvaluesof
κ. Typical resultsaregivenin Figures9-12.

Figures9-10 show the result for κ � 3 whereasthe
behavior at the”tuned” condition(κ � 1) is presented
in figures11-12.It canbeobservedthatthisPI tuning,
for which theresponseof thetunedsystemis fastand
oscillatory, resultsin a Hopf bifurcation for κ � 3,
whichagreeswith thetheoreticalanalysis.

5. SETTINGOFTHE PI GAINS

It is reasonableto think of a PI setting that would
avoid Hopf bifurcationsto takeplacefor κ ) � 0 	 3
 .
We cannotpursueanything larger thanthat,sincefor
κ � 3 there always exist a range for r

�
for which

anunstableequilibriumpoint exists,regardlessof the
PI settings(seeFigure 2). On the other hand, it is
advisableto keepbifurcationsfar enoughin orderto
avoid unsatisfactorytransientbehavior.

In analyzingthe occurrenceof Hopf bifurcation,we
alsohave to considertheeffectof thenormalizedload
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Fig. 8. Speedreferencestepsuntil Hopf bifurcation:
measuredquadraturecurrent.
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Fig. 9. Speedreferencestepsuntil Hopf bifurcation:
referenceandmeasuredspeed.
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Fig. 10. Speedreferencestepsin the ”tuned” condi-
tion: measuredquadraturecurrent.

r
�
. It is simpleto verify thatr

�
coincideswith theratio

xe
4 ' u0

2 for tunedoperation.In general,this ratio is no
largerthan2,soweconcentrateonarangefor r

�
given

by 0 " r
� " 2. This includesthe zeroload operation

for which experimentalresultshave beenprovided.

Following the statementof Lemma 1 (seeFig. 8),
Hopf bifurcationscan be avoided by setting the PI
gainsso that the closed-looppolesof the tunedsys-
tem are real or with high damping. Results pre-
sentedin (Bazanellaet al., 1999) also show that
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Fig. 11. Speedreferencestepsin the ”tuned” condi-
tion: referenceandmeasuredspeed.

thesepolesshouldnot be farther left in the complex
planethan � 23c1, a resultthat is alsoconsistentwith
therobustnessof globalasymptoticstability provided
in (ReginattoandBazanella,2000).Thus,poorPI set-
ting cancauseHopf bifurcationsbasicallyin two dif-
ferentways.Oneis to maketheclosed-loopresponse
oscillatoryby assigningcomplex conjugateeigenval-
ueswith low damping.Thesecondoneis to forcethe
closed-loopresponseto be very fast by choosingthe
closed-loopeigenvaluestoo far away to theleft in the
complex plane.

Basedon this analysiswe can proposeas a guide-
line for settingthe PI gainsthe following: chosereal
closed-looppolesfor the tunedsystemsuchthat the
desiredtransientperformanceis achieved,but always
avoiding to makethepoleslargerthan10c1 in orderto
keepthebifurcationfar away, thusimproving robust-
ness.
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tomática. Florianópolis,Brasil.pp.1048–1053.

Bazanella,A.S. and R. Reginatto (2000). Robust-
nessmargins for indirect field orientedcontrol
of induction motors. IEEE Trans. Aut. Cont.
45(6), 1226–1231.

Bazanella,A.S., R. Reginatto andR. Valiati (1999).
On hopf bifurcations in indirect field oriented
control of induction motors:designinga robust
PI controller. In: Conference on Decision and
Control. Phoenix,Arizona.

De Wit, P.A.S., R. Ortega and I. Mareels (1996).
Indirect field-orientedcontrol of induction mo-
tors is robustly globally stable. Automatica
32(10),1393–1402.

Espinosa-Perez,G., G. Chang, R. Ortega and
E. Mendes(1998). On field-orientedcontrol of
inductionmotors:Tuningof thePI gainsfor per-
formanceenhancement.In: Conferenceon Deci-
sionandControl. Tampa,Florida.pp.WM15–2.

Krishnan,R. andF. C. Doran(1987).Studyof param-
etersensitivity in high-performanceinverter-fed
inductionmotordrive systems.IEEE Trans.Ind.
Applic.IA-23(4), 623–635.

Leonhard,W. (1985). Control of Electrical Drives.
Springer-Verlag.Berlin.

Marino, R., S. PeresadaandP. Valigi (1993).Adap-
tive input-outputlinearizingcontrolof induction
motor. IEEETrans.Aut. Cont.38(2), 208–221.

Novotny, D.W. andR.D. Lorenz(1986).Introduction
to Field Orientation and High PerformanceAC
Drives. IEEE.

Reginatto,R. andA. S.Bazanella(2000).Robustness
of global asymptoticstability in indirect field-
orientedcontrolof inductionmotors.In: Confer-
enceonDecisionandControl. Sydney, Australia.


