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Abstract: Analysis of saddle-node and Hopf bifurcations in IFOC drives due to errors in
the estimate of the rotor time constant is presented. Experimental results showing such
bifurcations are given and guidelines for drive commissioning are derived from these results.
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1. INTRODUCTION the parameter space where the IFOC drives exhibits
this important property.

The commissioning of an indirect field oriented con-
trol (IFOC) drive requires the knowledge of the ro-
tor time constant, a parameter that can vary widely
in practice (Krishnan and Doran, 1987; Marimb
al.,, 1993) and is known to cause performance and
stability problems. It has been shown that the speed
control of induction motors through IFOC is glob-

ally asymptotically stable for any constant load torque o . .
if the rotor time constant is perfectly known or the The guidelines are intended for a design that keeps

error in its estimation is sufficiently small (De Wit all posis,ible instapility m_echanisms far enough from
et al, 1996; Bazanella and Reginatto, 2000). In a a practical operating region in the parameter space.

previous paper (Bazanella and Reginatto, 2000) weThe paper is organized as follows. In Section 2 the

also showed that saddle-node bifurcations occur for system modeling and the control equations are given
certain values of the mismatch in this estimation and and some additional convenient notation and concepts
certain load conditions. Another possible mechanism are introduced. Analysis and experimental verification

for loss of stability, namely, the occurrence of Hopf of saddle-node bifurcations are presented in Section 3.
bifurcations, has been considered in (Bazanella andResults regarding Hopf bifurcations are presented in
Reginatto, 2001; Bazanellet al, 1999; De Witet Section 4. Based on these results, in Section 5 we
al., 1996; Espinosa-Perezt al, 1998). Contrary to  derive guidelines for setting the estimate of the rotor

saddle-node bifurcations, this mechanism of loss of time constant and the parameters of the Pl speed
stability depends on the settings of the speed controlcontroller in order to guarantee stability of the system

loop (De Witet al,, 1996; Espinosa-Peret al,, 1998; for practical parameter mismatches.

Bazanelleet al, 1999). In the recent works (Reginatto

and Bazanella, 2000; Bazaneka al, 2000), effec-

tive results have been provided to analyze the global

asymptotic stability property of IFOC drives. Also in

this case, the setting of the PI speed loop controller

plays a fundamental role on the size of the region on

This set of results elucidates the influence of all rel-
evant tunable parameters in an IFOC drive on its
stability properties. In this paper we provide experi-
mental results that confirm and further clarify these
theoretical findings. On the base of these results, we
provide useful guidelines for the setting of the tunable
parameters in the commissioning of an IFOC drive.



2. PRELIMINARIES
2.1 Systemmodeling

We considertheindirectfield orientedcontrol (IFOC)
of induction motor drives. Field oriented control is
usually employedas a meansto achieve high per

formance transientresponsein speed, position, or
torquecontrol. Theimplementatiorof IFOC employs
stator currentcontrol, i.e., the induction machineis
currentfed, and allows three control inputs, namely:
igs, the direct axis statorcurrentcomponentjgs, the
guadratureaxis stator current component;and ),

theslip frequeng (Novotny andLorenz,1986;Leon-
hard,1985).

IFOC consistsin setting wy; and a specific initial-
ization procedurein the attemptto achieve a control
decouplingbetweerigs andigs, thefirst actingon the
rotor flux level, while the later acting on the devel-
opedtorque.More specifically we have (Novotny and
Lorenz,1986;De Wit etal., 1996):
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where €; is an estimatefor the inverse rotor time
constantc; = %, L, beingthe rotor inductanceand
R: therotor resistanceandu is someconstantvhich
definestherotor flux level.

In speedegulationapplicationsusuallya Pl regulator
is usedto actontheremainingcontrolinputigs,
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wherek, andk; arethegainsof the Pl speectontroller
andey = Wref — W is therotor speecerror.

If & = c1, thatis, if we have a perfectestimateof the
rotor time constantwe saythat the control is tuned,
otherwiseit is said to be detuned.Accordingly, we
define
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asthe degreeof tuning.lt is clearthatk > 0 andthe
controlis tunedif andonly if kK = 1.

By choosingstatevariablegxi, X2, X3, X4] = [Aqgr, Adr, 8w, i

we obtainthe inductionmotor modelunderfield ori-
entedcontrol (1)-(2) and Pl speedregulation (3) de-
scribedas:

KC1
X1 = —CoXy + CoX — - 5 XoXa (5)
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X =—C1Xp + Colly + 5 X1Xa (6)
2

X3 = —C3X3 — C4[C5(XoXq4 — ngl) —Tel (7
X4 = KeXa — KpCalCs(XoXa — Udx1) — Te]  (8)

whereAqr and Mg, standfor the quadratureand di-
rectaxis component®f the rotor flux; Ty, is theload
torque,which is assumecdtonstant;c; to ¢5 are ma-

chineparametersandwe have definedk; £ ki — KpC3
andTe é Tm + %?;Wref .

It is easyto shaw thatfor position regulationwith a
proportional-deniative controller the samemodel is
obtainedafter a changeof variables,so that all the
resultsderived for speedregulationarealsovalid for
positionregulation.

2.2 Thetunedsystem

A constantrotor flux mustbe establishednside the
motorbeforethesystencanbeoperatedThisis called
the magnetizatiorphaseof IFOC, andis achiezed by
settingigs = ug andwes = 0 with themotorin stand-
still condition. The steady-stateeachedunderthese
conditionsis givenby x=x° = [0, 2u), 0, 0]', which
is consideredheinitial statefor IFOC operation.

In thetunedcasek = 1, the model(5)-(8) simplifies
considerablyFirst, noticethatstartingfrom x(0) = x°,
the fluxes x; and xz remain constantfor all times,
regardlessof the behaior of x4. Now, taking this
into accountthe remainingequationg(7)-(8) can be
rearrange@ds
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whichis a second-ordelinear system We shallrefer
to the dynamicsystem(9) asthetunedsystemwhich
is usuallytakenasabasefor settingthe Pl gains.

Thetunedsystemjust definedrepresentan ideal sit-
uation,in which perfectfield-orientationis achieved.
Under this condition optimal performancecan be
achieved, and the Pl speedcontroller is set for the
desiredperformanceSincein this casethe controlled
systemis linear and of order two, the tuning of the
PI controller under the assumptionof perfectfield-
orientationis simple, andin theory arbitrary perfor
ancecanbeachieved.

From(9), theclosed-loopeigervaluesaretherootsof
thecharacteristipolynomial

pT(A) = A%+ (c3+ kpK)A + kiK (10)

0
whereK 2 2%%% Thenthe PI parameters, and

ki canbe chosento arbitrarily assignthe closed-loop



eigervaluesof the tuned system.Indeed, let the de-
siredclosed-loopcharacteristi¢Hurwitz) polynomial
bewritten as

Mtal+ag, a>0a1>0 (11)

Then,equatingthe coeficientsin (10)and(11) yields

a1—Cs ao
ko=t k= (12)

Oncetheclosed-loopolesarechoserthe parameters

kp andk; canbecalculatedrom (12).

3. SADDLE-NODEBIFURCATION

3.1 Analysis

and

Let us definethe dimensionleswvariablesr 2 %

2
« A Teqp *
= e The constantr” representshe system

loading,sinceit is proportionalto theelectricaltorque
developedin steady-stateThe parametemr can be
shawn to satisfythe third-orderpolynomial equation
(BazanellaandReginatto,2000)

Kr3—r*k’r? +kr—r*=0 (13)

andthe equilibriacanbewritten as

oUW 1-k .
c1 1+K2r?
coU9 14-«r?

c1 1+K?r2
0
0
Uy I

(14)
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The complete characterizatiorof the equilibria, as
given by the polynomial equation(13), is illustrated
in Figure2 (BazanellaandRegginatto,2000). Thetwo
cunves, on the (k,r*) parameterspace,delimit the
region where equation(13) has 3 real solutions (3
equilibrium points). For ary point outsidethe region
we have a uniqueequilibrium point. The point where
the two curvesintersectis k = 3, r* = ? Thus,we
have auniqueequilibriumpointfor ary loadcondition
if andonly if kK < 3.

If the load and/orthe degree of tuning are modified
gradually starting from the tuned condition, then a
saddle-noddifurcationoccurswhenone of the lines
in figure 2 is crossed.The branchingdiagram for
K = 4 is presentedn Figure3. If theloadis increased
graduallywhenthesaddle-nodeifurcationis reached
a jump will occurin current,bringing it to another
equilibriumwherethe currentlevel is morethanfive
timeslarger.
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Fig. 1. Locus of the pointsin the parameterspace
wherethe numberof equilibriachanges.
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Fig. 2. Branchingdiagramfor Kk = 4.

Tablel. Motor data.

Ratedpower ihp
Ratedfrequeny | 60Hz
Ratedvoltage 380V
Ratedcurrent 0.8A

a1 5051

C2 25Q

Cc3 0.54s71

C4 714kg~tm=2
Cs 2.84

3.2 Experimentatesults

Experimentalresults are obtainedin a current-fed
IFOC drive with a DC generatomproviding the load.
By varyingthe electricalload of the DC generatothe
mechanicaload of the drive is varied,alwaysgetting
aloadtorqueproportionalto thedrive speed Datafor

the experimentakettingaregivenin Tablel

A saddle-nodéifurcationfor k ~ 4 canbeobsenedin
the experimentalresultsshovn in figures4-5. We can
not guaranteghe exact value of k becauseve don't
have a perfectestimateof c; for this operatingcondi-
tion. The field currentand load of the DC generator
are setat a constantlevel suchthat the steady-state
electricaltorqueandthereforethe equvalentload r*



aresignificantlyincreasedy increasinghereference
speedThedirectaxiscurrentis setatud = 0.4 A.

As the referencespeedis increasedthe equivalent
load r* alsoincreasesgventually reachingthe point
where a jump in currentoccurs,att = 4 s. Since
the final valueof the currentis muchabove nominal,
motor protectionis activated, currentdropsto zero
andthe motor goesto stall. It canbe seenin figure 4
thatthe currentspecifiedby the speedcontrollerdoes
jump, althoughthe actualcurrenttendsto zerodueto
actuationof the protection.

quadrature current (A)
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Fig. 3. Speedeferencestepsuntil saddle-noddifur-
cation: referenceand measuredjuadraturecur-
rent.
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Fig. 4. Speedreferencestepsuntil saddle-noddifur-
cation:referenceandmeasuredgpeed.

We also provide resultswith kK = 1 in figures6-7. It
canbe seenthat the jump for K &~ 4 hasoccurredat
the last stepof referencespeedThe averagevalue of
the quadraturecurrentin this operatingcondition for
K ~ 1is measure@siq = 0.166A, which corresponds
to r* = 0.415. The jump is obsened beforethe bi-
furcationactually occurs,at a point wherethe lower
equilibrium pointin the branchingdiagramin Figure
3 still existsbut its region of attractionis very small.
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Fig.5. Speedeferencestepsn the "tuned” condition:
measuredjuadratureurrent.
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Fig. 6. Speedeferencestepsn the"tuned” condition:
referenceandmeasuredpeed.

4. HOPFBIFURCATIONS
4.1 Analysis

A Hopf bifurcation characterizesn equilibrium be-

comingunstableby the crossingof the jw axisby two

comple conjugateeigervaluesof thejacobian.In the

importantcaseof zeroload operation,a closedform

condition for existenceof Hopf bifurcationscan be

derived asfollows (Bazanellaet al., 1999; Bazanella
andReginatto,2001).

Lemmal. Let c3 = 0 and Ty, = 0. Then, no Hopf
bifurcationtakesplacefor ary k > 0 providedthatay,
a; satisfytherelation

ap < a(Cr1+a) (15)

If condition15is notsatisfiedthena Hopf bifurcation

takesplaceat

K:Khé ap(C1+ay)
Ci(ag—ay(c1+a1))

(16)

&

Condition (15) is satisfiedwheneer the closed-loop
eigervaluesfor the tuned systemare chosento be



real. If comple closed-loopeigervaluesare desired,

thenthe imaginarypart hasto be chosensuficiently

small in order to satisfy (15). Figure 8 illustrates

the situation for the compl eigervaluescase,i.e.,
M2 = —0 =% jw. The value of Ky is plotted as a
function of o/c1 and jw/cy, the normalizedreal and
imaginarypartof thechosereigervaluesfor thetuned
systemyespectiely. Thefigurealsoshavstheregion,
in the (o, jw) plane,whereno Hopf bifurcationtakes
placefor ary k. We canseethatky, approachese at
the boundaryof that region andrapidly decrease$o
practicalvaluesasthe dampingis decreased.
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Fig. 7. Parameterchartfor the zeroload case.Tuned
systemeigervaluesi; » = —o + jw. Thedashed
regionin the (o, jw) planeillustratesthe region
whereno Hopf bifurcationtakesplacefor ary k.

4.2 Experimentatesults

Experimentalresultsare provided for a given setting
of the speedloop. The PI controlleris setaskp =
4.7E — 3 Asandk; = 0.1 A. Severalexperimentshave
beernperformedundemoload,with differentvaluesof
K. Typical resultsaregivenin Figures9-12.

Figures9-10 shaw the resultfor K &~ 3 whereasthe
behaior atthe "tuned” condition(k = 1) is presented
in figures11-12.1t canbe obsenedthatthis Pl tuning,
for which therespons®f thetunedsystemis fastand
oscillatory resultsin a Hopf bifurcation for k = 3,
which agreeswith thetheoreticalanalysis.

5. SETTINGOF THE PI GAINS

It is reasonabldgo think of a Pl settingthat would
avoid Hopf bifurcationsto take placefor k € (0, 3.
We cannotpursueanything larger thanthat, sincefor
K > 3 there always exist a rangefor r* for which
anunstablesquilibriumpoint exists, regardlesof the
Pl settings(seeFigure 2). On the other hand, it is
advisableto keepbifurcationsfar enoughin orderto
avoid unsatisfactoryransientbehaior.

In analyzingthe occurrenceof Hopf bifurcation, we
alsohave to considerthe effect of thenormalizedoad
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Fig. 8. Speedreferencestepsuntil Hopf bifurcation:
measuredjuadratureurrent.
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Fig. 9. Speedreferencestepsuntil Hopf bifurcation:
referenceandmeasuredpeed.
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Fig. 10. Speedreferencestepsin the "tuned” condi-
tion: measuredjuadratureurrent.

r*. It is simpleto verify thatr* coincideswith theratio
x¢/u9 for tunedoperation.n generalthis ratio is no
largerthan2, sowe concentrat®narangefor r* given
by 0 < r* < 2. Thisincludesthe zeroload operation
for which experimentaresultshave beenprovided.

Following the statementof Lemmal (seeFig. 8),
Hopf bifurcationscan be avoided by setting the PI
gainsso that the closed-looppolesof the tunedsys-
tem are real or with high damping. Results pre-
sentedin (Bazanellaet al., 1999) also shawv that
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Fig. 11. Speedreferencestepsin the "tuned” condi-
tion: referenceandmeasuredpeed.

thesepolesshouldnot be fartherleft in the comple
planethan —23c;, aresultthatis alsoconsistentvith
therobustnes®f globalasymptoticstability provided
in (ReginattoandBazanella2000).Thus,poor Pl set-
ting cancauseHopf bifurcationsbasicallyin two dif-
ferentways.Oneis to makethe closed-loopresponse
oscillatory by assigningcomple« conjugateeigerval-
ueswith low damping.The secondbneis to forcethe
closed-loopresponséo be very fastby choosingthe
closed-loopeigervaluestoo far away to theleft in the
comple plane.

Basedon this analysiswe can proposeas a guide-
line for settingthe PI gainsthe following: chosereal
closed-looppolesfor the tunedsystemsuchthat the
desiredtransientperformances achieved, but always
avoiding to makethepoleslargerthan10c; in orderto
keepthe bifurcationfar away, thusimproving robust-
ness.
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