
SIMULATION AND RELIABILITY ANALYSIS OF CONTROL SYSTEMS WITH MULTIVERSION
SOFTWARE

V.S. Kharchenko1, V.V. Sklyar2

1National Aerospace University named after N.E. Zhukovsky
”Kharkiv Aviation Institute”,

2Kharkiv Military University, Ukraine

Abstract: The solution of the problem of multiversion control computer-based systems
(MVSs) simulation and reliability evaluation is offered by Monte-Carlo method. This
method is applied for simulation of: software defects and defective versions; input data
for different distribution laws; hardware and majority subsystem failures. Detailed
notation of the modeling system and the simulation technique are given. The results of
the simulation and reliability evaluation of the majority software versions and adaptive
MVS are analyzed. Copyright © 2002 IFAC

Keywords: adaptation, digital systems, multiversion software, reliability analysis,
simulation.

1. INTRODUCTION

The reliability and safety of computer control
systems substantially depend upon software
reliability. Over the past forty years the proportion of
software defects among failure reasons has increased
from 10-15 to 30-60 % (Lyu, 1996; Kharchenko,
1996; Lapri, 1998). First of all, it is concerned with
computer control real-time systems for critical
applications. Such systems are produced by unique
designs and are of high cost. Moreover, the designing
and testing technologies don’t guarantee the
elimination of all software defects. The decision of
hardware and software defect tolerance problem is
possible by application of a multiversity. The
multiversion principle is realized in computer
systems used in aviation, cosmonautics, chemical
industry, railway transport, atomic power stations.
The multiversion system (MVS) reliability, as any
computer system reliability, is evaluated in view of
their architecture and reliability of two components:
software and hardware. If for determination of
hardware reliability measures (RMs) the efficient
mathematical apparatus is based on using
combination-probability methods, then it is difficult
for software to determine the laws of random
distribution. It this case it is advantageous to use
Monte-Carlo method.

The aim of the paper is development of the technique
of simulation and reliability analysis of MVSs and
multiversion software. The elements of this technique
are the algorithm of software simulation, the
approach to estimating of MVS reliability and the
developed reliability model of the adaptive
multiversion majority systems. In this paper it is
proposed for MVS reliability estimating to combine
two methods: combination-probability method for
hardware reliability estimation and Monte-Carlo
method for software reliability estimation and system
as a whole. The subject of investigation is restricted
to MVSs for unmanned computer control real-time
systems used, for example, in aerospace complexes
(Schneidewind, 1997).

2. GENERAL ALGORITHM OF SOFTWARE
RELIABILITY ESTIMATION BY MONTE-

CARLO METHOD

The process of software simulation for estimating its
reliability consists of three stages: development of
software model with defects; selection of distribution
law and generation of software input data; estimation
of software RMs. The general algorithm of software
operation process is shown in Fig. 1. At the first
stage for simulation of the process of defect

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

introduction into the program by Monte-Carlo
method, the types of defects and their location in
program text are generated; for this purpose the
random-number generator (RNG1) is used. As a
result, non-identical software copies with defects are
obtained. They constitute the database of software
defect copies. The domains of values and the laws of
random distribution for all input values being
processed by the program are determined at the
second stage of the simulation.

RNG2 must reproduce the serial number of software
copy from defect copy database, and RNG3 – the sets
of input data. The results of software operation are
fixed and on the basis of these data the software RMs
are calculated. Each simulation stage may be a one-
version or multiversion one.

3. DEVELOPMENT OF SOFTWARE MODEL
WITH DEFECTS

At the first stage of modeling process defects are
introduced into initial software text. For this purpose
RNG1, defects catalog and software metrics set are
used (Fig. 1). Defects catalog includes the list of
numbered defect types, the most characteristic for
software being investigated. Metric is the numbers of
software (modules, lines, operators, operands), into
which the program is decomposed according to
certain rules (Halstead, 1977; Lyu, 1996). In general
case there can be used some different metrics for a
single program. The type of defect (number from
defect catalog) and its location (number of metric
element) are selected by Monte-Carlo method.

For this, as a rule, the uniform law of random
distribution is modeled. In general case the random
distribution law can be modified. Then defect
varieties in software can be shifted to some type of

defects and their location can be grouped around
certain position in program text. The number of
defects in software is calculated with the help of
apriority model, for example, Halstead model
(Halstead, 1977). Their estimation then can be
corrected in view of testing intensity. The number of
software defects computed according to some model
is usually small. If for simulation modeling only one
copy of software with defects is analyzed, this can
yield sufficient shift of estimations. Therefore, in a
given methodology it is proposed to replicate a great
number of software defect copies, thus, creating a
database for defects. As more there are such software
copies, as more accurate some “mean” software
defects can be modeled and as more precise software
RMs can be evaluated. At the same time
manipulating with defect catalog contents and
metrics set and also RNG1 parameters, it is possible
to maximize an adequacy of defect copy database to
designer’s peculiarities and design specificity.

4. GENERATION OF INPUT DATA SETS

It is proposed to model input data sets by Monte-
Carlo method. Proceeding from technical task and
operation conditions, for each input magnitude Xi, i =
= 1,…,n the domain of possible values can be
defined, even if approximately, i.e. the interval Xi ∈
[Xib;Xif]. Besides, proceeding from the same
conditions for each magnitude Xi a distribution law
must be given. In general case it can be a uniform
random distribution law. Then RNG3 form n input
data from sets X at given intervals according to
selected distribution laws. The software testing is
realized at these input data sets. Besides, RNG2 must
specify (n + 1)-th random value, serving for
determination of defect copy number from database,
which must be called up for execution at particular
testing stage (Fig. 1).

Figure 1. General algorithm of software operation process

RNG 3

Estimation
of software

RMs

RNG 2

Number
of copy

Defect
catalog

Software
metrics

RNG 1

Type of
defect

Location
of defect

Input
data

Results
of run

Copies of software
with defects

Software Selected
copy

The simulated number of software defects can be
corrected depending on life cycle phase. To do so, it
is necessary to increase the number of module
numbers generated by RNG2. Thus, if the number of
a defect copy generated by RNG2 exceeds the
number of copies in the database, then initial
software is executed. If the number of defect modules
remains constant, then the difference between a
maximum value generated by RNG2 and the number
of defect modules is increased. For uniform
distribution the number of calls of defect modules is
decreased and in the end reliability measures of
software are increased. At different stages of
software life cycle this process can be simulated by
giving the coefficients of software debugging. It
should be noted, that when the generated input data
set is processed by initial software, the defects
skipped in testing can be detected. Thus, the
methodology allows to improve the quality of
software debugging process and to refine software
reliability estimation.

5. COMPUTATION OF SOFTWARE
RELIABILITY MEASURES

For justification of calculated formulas it is necessary
to form a series of theoretical propositions. Software
operation of computer systems consists in a
processing data set X = {X1,...,Xi,...,Xn}, that arrive at
computer system input. By the term “run” software
(single execution) it will be understand an event
consisting of arrival at program input of arbitrary
input data set X, its processing by the program and
producing desired results.

In custom-definition of requirements to the program
it is supposed, that software will execute some
function ϕ(X). However, due to different
inaccuracies of technological cycle of software
development, the real software implements some
function ϕ1(X) different from the given one ϕ(X).

Reasons causing such inaccuracy are explained by
complex conversions of information during software
development; these conversions are impossible
without some distortions. The analysis of distortion
causes and mechanisms of their introduction is the
subject of separate investigation. In most cases the
difference in operation results between real and ideal
software lies in the tolerances, i.e.

tol∆≤ϕ−ϕ=∆)()()(1 XXX . (1)

However, some cases are possible when difference of
results exceeds a tolerable one, i.e.

tol∆>ϕ−ϕ=∆)()()(1 XXX . (2)

The event consisting of the fact that software
operation results are differed from required results by
magnitude exceeding tolerable deviation is fixed as

fault of software. The term “fault” but not “failure” is
used because unmanned control systems are
considered; their operation cycle consists of series of
computing cycles; at each cycle identical
computations are performed for different input data.
Hence, if ∆(X) > ∆tol at i-th step (cycle) of
computations, it is quite probably that at (i + 1)-th
cycle we will have ∆(X) ≤ ∆tol and normal operation
of software, and system on the whole will be
restored. It should be noted, that ∆(X) characterizes
not only quantitative aspect of computing process,
i.e. the accuracy of software operation or
computation error. The magnitude ∆(X) characterizes
and qualitative aspect of computing process, i.e.
determines limitations on computing cycle time,
absence of unusual situations, post-fault reset time
etc. In unmanned systems software defects are not
eliminated, hence the number of defect remains
constant during the whole of operation stage. In turn
this results that at fixed laws of input magnitude
distribution the rate of defect display remains
constant. Therefore, the mean time before software
fault is distributed exponentially:

}exp{)(ttP λ−= , (3)

where P(t) – probability of non-fault of software over
time t (PNF);
λ – fault rate of software (constant value).

To use this formula it is necessary to define the fault
rate. The operation results of software model with
defects are compared with required ones in the
course of testing, and software faults are fixed. Then
the probability of software single non-fault operation
can be defined by the formula

runs

faults

N
N

P −=11 , (4)

where Nfaults – the number of fault fixed during
testing;
Nruns – total number of software runs.

In unmanned systems software defects causing faults
are not eliminated in the process of their functioning.
Therefore at any serial number of computing step the
magnitude P1 will be the same. Fault rate of software
in [1/step] can be defined by the formula

1
* ln]step/1[P−=λ . (5)

Dependence of software PNF on step serial number
(cycle, run) is defined by the formula

}*exp{)(NNP λ−= , (6)

where N – serial number of computing step of control
system.

For the change from step serial number to time it is
necessary to take account of the computing step
duration T: λ[1/hour] = λ*[1/step] / T [hour]. Then

}exp{)(NTtP λ−= . (7)

The example of software reliability assessment are
illustrated by plots of version PNF change in time at
uniform and normal laws of input data distribution
(Fig. 2).

Fig. 2. Plots of software version PNF change in time

6. ESTIMATION OF MULTIVERSION SYSTEMS
RELIABILITY

To estimate MVS reliability as a collection of
interrelated elements is necessary take into account
both software and hardware reliability. In MVS
hardware as in any computer system two constituent
parts can be distinguished: 1) primary hardware
(denote it HW1, it includes various storage devices
where instruction sequences are stored HW1
component volume is utterly determined by software
volume); 2) computing equipment implementing
information processing, signal conversion etc. (it is
secondary hardware HW2, it includes processors,
arithmetic-logic devices, data converters etc).

System failure or fault can be caused by physical
defects of system elements and design defects.
Physical defects are characteristic of HW1 and HW2
components and design defects are inherent in
software, basically. Consequently, for objective
estimation of computer system reliability it is
necessary to take account of software component
reliability (denote it SW). Thus, the system can be
represented by three components

}2,1,{ HWHWSWS = . (8)

The more developed the software is more capacious
are the SW and HW1 components and the less is the
HW2 component volume and vice versa. If it is
supposed that SW, HW1 and HW2 failures are
independent then the probability of non-failure of
system will be equal to PNF product of
corresponding components

)()()(21 tPtPtPP HWHWSWS = . (9)

As a rule the exponential distribution of time before
failure is used for the computation of the hardware
probability of non-failure:

. }exp{)(

; }exp{)(

22

11







λ−=

λ−=

ttP

ttP

HWHW

HWHW (10)

As was shown above, for software of unmanned
systems it is also necessary to apply the exponential
law of time distribution before fault. It is a custom to
divide software into applied or functional (SWFi, i =
1,…,n) and system (SWS) software. In its turn,
applied software executes a number of functions,
which are determined by MVS specificity. Besides,
the functions of applied software can be reduced to
such a set Fi, i = 1,…,n, that non-execution of any set
function will result in MVS failure. Primary
hardware component can be divided into the
following parts depending on software: hardware for
storing system software (HW1S) and hardware for
storing applied software (HW1Fi, i = 1,…,n).
(HW1Fi, i = 1,…,n). Proceeding from the above-
stated, the structural model of one-channel computer
system can be represented in the form shown in Fig.
3. The probability of non-failure of the system,
shown in Fig. 3 is defined by the formula:

[]

[])()(

)()()()(

21

1

1

1

tPtP

tPtPtPtP

HWHW

HWSWSWS

n

i
iF

S

n

i
iFS

∏

∏

=

=

×

×=
 (11)

Using an assumption that all functional modules of
software SWFi, i = 1,…,n are approximately equal in
volume and complexity, the equation (11) will take
the following form:

)()(

)()()()(

21

1

][

][

tPtP

tPtPtPtP

HW
n

HW

HW
n

SWSWS

iF

SiFS

×

×=
 . (12)

When deriving formulas for MVSs it is necessary to
take into account the following fundamentally
important points.
1. Application of three-version majority
architectures assumes availability of majority
element (ME) in the system. As system the ME can
be decomposed into the following components: SWM,

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

t, hour

P(
t)

version1, even distribution
version1, normal distribution
version2, even distribution
version2, normal distribution
version3, even distribution
version3, normal distribution

SW
SW Fn

SWSW F1SW S

HW
HW1

SW Fn
SWHW1FHW1 S

HW2

Fig. 3. Model of one-channel computer system

HW1M, HW2M. Probability of non-failure of these
components must be taken into account in estimating
MVS probability of non-failure.

2. Besides, it should be noted, that the portion of
defects is common for all three versions in MVS.
Such defects are called absolute ones, and different
defects for each of the versions are called the relative
ones. Presence of absolute defects may be caused by
two reasons: a) occasional coincidence of
programming errors in different versions; b)
specification errors.

The first component of absolute defects can be
estimated by Monte-Carlo method in the course of
determining version defect rate. The second
component is usually given by coefficient KSWabs of
the ratio of absolute defect display rate of
multiversion software to software relative defect
display rate. By different estimations (Lyu, 1996;
Kharchenko, 1996) this coefficient varies within the
limits of 0.1-0.3.

Thus, multiversion software fault rate has constant
component, attributed to absolute defects, and
variable component, attributed to version relative
defects. The events consisting of software absolute
and relative defect display are considered
independent. These events are estimated by
probabilities PSWabs and PSWrel and rates λSWabs and
λSWrel, respectively. Then the probability of software
non-fault operation











λ−−λ−=

λ−=λ−=

=−

. }3exp{2}2exp{3

; }exp{}exp{

;

t
SW

t
SW

P

tKtP

PPP

relrelrel

relabsabsabs

rel

SW

SWSWSWSW

SWSWSW absversionN

(13)

Finally, to define MVS one has to take into account
the adaptation algorithm and the reliability of
hardware and software checking as well as the
diagnostic device (D). It should be noted, that the
Monte-Carlo method can be used for modeling not
only software faults, but for modeling hardware
failures. To do so, it is necessary to introduce into the
modeling scheme (Fig. 1) one more RNG and define
time distribution laws before failure for software
components.
Let the adaptation algorithm be used in MVS, under
which MVS is reconfigured on one version or one
hardware channel at failure of two of three software
versions (two of three hardware channels). For all

this it is unimportant, how many hardware channels
failed before this event. As an example, the
probability of non-failure of such MVS is equal:

.)()()]()[(}]

)](1)[(3)(2)(3[

)()()()]()(

)(1[3])](1)[(3

)(2)(3[)]()(

)([)]()()(1 [3

)]()()([])](1[

)(3)(2)(3{)(

21

232

211
2

21

1
2

322
21

1211

3
211

2

322

[

MMMiF
abs

S

iF
rel

iF
reliF

rel
iF

rel

SiFS

iFiF
rel

iF
rel

iF
rel

iF
rel

S

iFSiF

SiFiF
rel

iF
reliF

rel
iF

rel

HWHWSW
n

SWSW
n

SWSWSWSW

HWHW
n
HWHWHW

n
HW

n
SWSW

SWSWHWHW

n
HWHWHW

n
HW

HWHW
n
HW

n
SW

SWSWSWS

PtPtPtPtPD

tPtPtPtP

tPtPtDPtPtP

tPDtPtP

tPtPtPtP

tPtPtPtP

tPtPtPDtP

tPtPtPtP

×

×−+−×

××

×−−+

+−××

××−+

+−×

×+−=

(14)

For calculation according to formula (14) it is
necessary to define the portion of software absolute
and relative defects. Probability of non-failure plots
of adaptive MVS for various values of absolute
defect coefficient KSWabs are shown in Fig. 4 (λSWS =
λSWFi = 10-5 1/h; n = 5; λHW1Fi = λHW1S = 10-7 1/h;
λHW2 = 10-6 1/h; λSWM =10-8 = λHW1M = λHW2M = 10-8

1/h; D = 0,9).

Fig. 4. Probability of non-failure plots of adaptive
MVS

0,5

0,6

0,7

0,8

0,9

1

0

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

t, hour

P(
t)

one-channel system

adaptive system (K=0,1)

adaptive system (K=0,3)

adaptive system (K=0,5)

7. MULTIVERSION TECHNOLOGY OF
SOFTWARE DEVELOPMENT FOR

RELIABILITY ASSESSMENT

To decrease risks of erroneous reliability calculation
connected to software faults a method is proposed
which was tested in assessment, engineering and
evaluation of aerospace, nuclear power plants safety
systems and other critical applications. This method
is based on multiversion technology of critical real-
time software development (Lyu, 1996; Kharchenko,
1999).

Multiversion mode can be introduced at various
stages (specification, mathematical model
development, software design, coding, testing,
verification, etc.) and by various methods
development. Issuing from this a set of multiversion
technologies is formed which is corroborated by
multilevel graph in general case.

The analysis showed that an increase in cost of
development of several versions may be
compensated for by cost reduction due to shorter
testing time sufficient for an acceptable residual level
of software faults. Such a phenomenon is explained
by a higher intensity of fault finding during parallel
testing of several versions.

For the reliability assessment problem under
consideration multiversion mode is introduced at the
stage of formalization by selecting various types of
mathematical models and at the stage of software
design by application of independent program
designers, various programming languages, code
generators and debugging tools. The developed
program versions were assessed using Halstead
metrics, then qualified according to test results. In
case of identity of version reliability final
characteristics a program with the least value of
defects number or another parameter was chosen as a
basic (operational) one (Kharchenko et al., 2000).

The procedure of choice among multiversion
technologies is hard for formalization due to a large
correlation of costs and time of realization of various
lifecycle stages and attained software reliability level.
The choice of technologies can be based upon
expression (Kharchenko, 1996) interconnecting the
probability of software no-fault operation after
design and testing and total costs of performance of
those two stages CDT:







−γ−=α
β−−= α

,)(
;)1(1

DNDT

DDT
CeC

PP (16)

where PD – probability of software no-fault operation
after design;
CD – cost of unit version design;
β – testing process coefficient;

γ – coefficient depending upon complexity of
program and number of versions.

8. CONCLUSION

The expansion of real-time MVS field of application
calls for requirements to reliability estimation of such
systems. To estimate reliability of complex objects,
such as MVS, it is insufficiently to use one method.
Therefore, for MVS reliability estimation joint
application of combination–probability method (to
estimate hardware component) and Monte-Carlo
method (to estimate software component) is
proposed.

The technology of analysis and choice of
architectures of MVSs is developed on the basis of
use of the different methods of reliability estimating.
It is one of the variants of multiversion technologies
(Kharchenko, 1996).

The proposed technique of simulation and reliability
estimation of MVSs is the essential element of this
technology. The technology is used for designing,
testing and review of MVSs. This technology is “an
open technology” for expansion of the field of
Monte-Carlo method application for estimating
reliability of hardware and majority and
reconfiguration means. Such necessity may take
place when very large-scale integrated circuits are
used and their laws of failure distribution require
refinement.

REFERENCES

Halstead, M. (1977). Elements of Software Science.
Elsevier North-Holland, New York.

Kharchenko, V.S. (1996). Theory of defect-tolerant
digital systems with version redundancy.
Military University, Kharkiv (In Russian).

Kharchenko, V.S. (1999). Methods of an Estimation
of Multiversion Safety Systems. Proceeding of
the 17th International System Safety Conference,
Orlando, FL, Aug. 16-21, 1999.

Kharchenko, V.S., Sklyar, V.V. and Vilkomir, S.A.
(2000). Models fitting of software reliability
assessment for critical application systems.
Control systems and machines, 3, 59-69 (In
Russian).

Laprie, J.-C. (1998). Dependability Handbook.
Laboratory for Dependability Engineery, LAAS.

Lyu, M.R. (edit.) (1996). Handbook of Software
Reliability Engineering. McGraw-Hill.

Schneidewind, N.F. (1997). Reliability Modeling for
Safety-Critical Software. IEEE Transactions on
Reliability, 46(1), 88-98.

