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Abstract: Maintaining desired concentration of the dissolved oxygen (DO) in an activated 
sludge process is crucial for feasible and efficient operation of a wastewater treatment 
plant. The dissolved oxygen dynamics is nonlinear and of high dimension. The available 
models involve many parameters that are very difficult to estimate. Utilising the 
dynamics structure and its multiple time scale a simplified nonlinear SISO model was 
recently adopted with a disturbance inputs that can be efficiently and sufficiently 
accurately predicted over short time period. Based on this model a nonlinear model 
predictive controller was designed showing good performance. However, necessity of 
solving a nonliner optimisation task during the controller operation limits its performance 
under large and fast changes of disturbances or reference trajectories. In the paper a fuzzy 
Takagi - Sugeno type model of the nonlinear dynamics is produced based on its local 
linearisations. The recently proposed fuzzy predictive control strategy is then applied to 
obtain a nonlinear fuzzy predictive controller. The controller is tested and validated on 
physical data sets showing substantial savings in computing time with negligible loss on 
its performance. Copyright © 2002 IFAC 
 
Keywords: bio-technical processes, nonlinear systems, set-point control, predictive 
control, fuzzy control. 

 

 
 
 

 
1. INTRODUCTION 

 
An activated sludge wastewater treatment plant can 
be classified as a complex system due to its 
nonlinear dynamics, large uncertainty in 
uncontrolled inputs and in the model parameters and 
structure, multiple time scale of the dynamics, and 
multi input-output structure. In addition, rather 
scarce measurements are available during plant 
operation; hence using the mathematical models is 
essential in designing the controller. However, there 
is significant uncertainty in these models and their 
identification is still an open problem. Hence, until 
recently an intensive work on physical modelling 
wastewater plant was rather separated from using 
these models for a controller design. Recent 
developments in control technology and particular 
in model predictive control, handling an uncertainty, 
estimation, trajectory tracking in nonlinear systems 
and intelligent control triggered out new research 
and applications in this field (e.g., Barros and 
Carlsson, 1997; Bechmann, et al., 1998; Brdys and 
Zhang, 1999, 2001; Brdys and Konarczak, 2001, 
Hadj-Sadok and Gouze, 2001; Katebi, et al., 1999; 
Keesman, et al., 1999; Haarsma and Keesman 1995; 
Kim, et al., 2000, 2001a, b; Lindberg and Carlsson, 
1996; Lukasse, et al., 1998; Nielsen, 2001; Olsson 
and Newell, 1999; Puta, et al., 1999; Sorensen, et 

al., 1995; Steffens and Lant, 1999; Van der Veen, et 
al., 1999; Weijers, et al., 1997; Zhao, et al., 1995). A 
hierarchical three level control structure that utilises 
multiple time scale in the plant dynamics for robust 
optimised control of the biological wastewater 
treatment was proposed in (Brdys and Zhang, 1999, 
2001). In this paper we shall consider a design of the 
lower level controller that allows tracking the 
robustly optimised dissolved oxygen concentration 
(DOC) trajectory prescribed by the higher control 
level. The DO control design was considered in 
(e.g., Haarsma and Keesman, 1995; Olsson and 
Newell, 1999; Lindberg and Carlsson, 1996; 
Holmberg et al., 1989 and Brdys and Konarczak, 
2001). A model predictive control based on 
linearised model of the DO dynamics was first 
considered by Haarsma and Keesman (1995). Model 
reference adaptive control and nonlinear predictive 
control was investigated by Brdys and Konarczak 
(2001) for the nitrogen and phosphorus removal 
showing an excellent performance of the predictive 
controllers. A superior performance of nonlinear 
predictive controller over the linear one was 
demonstrated. However, necessity of solving a 
nonliner optimisation task during the controller 
operation limits its performance under large and fast 
changes of disturbances or reference set-point 
trajectories (Brdys and Konarczak, 2001). In the 
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paper, in order to increase a computational 
efficiency of the nonlinear predictive controller a 
fuzzy model of the nonlinear dynamics is produced 
based on its local linearisations by blending the 
linear local models using Takagi - Sugeno fuzzy 
technology. The fuzzy predictive control strategy 
proposed by Hadjili et al. (1998) and also developed 
independently by the authors is then applied to 
obtain a nonlinear fuzzy predictive controller. The 
controller performance is tested and validated on 
physical data sets showing substantial savings in 
computing time with negligible loss on its 
performance. 
 
 

2. PROBLEM FORMULATION 
 
A structure of considered wastewater treatment plant 
is illustrated in Fig. 1. 
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Fig. 1. A structure of a wastewater treatment plant. 
 
The recycled flow Qr2(t) and the returned from the 
settler, activated sludge flow Qr1 are prescribed by 
the higher control levels (Brdys and Zhang, 2001). 
The aeration flow Qair(t) is used as the control input 
to the reactor in order to track a prescribed by the 
mid control level trajectory of the dissolved oxygen 
So,ref(t). A dynamics of So is described by the 
nonlinear differential equation (Olsson and Newell, 
1999): 
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where V=0.475m3, So,sat=9.23gm-3,Ko=0.3gm-3 denote 
volume of aeration tank, DO saturation concentration 
and Monod constant determining the DO limit, 
respectively; Qout(t)=0.06m3h-1.  
 
The function kLa(Qair) describes the oxygen transfer 
and it is in general nonlinear and depends on the 
aeration actuating system and sludge conditions. It is 
assumed linear in the paper (Olsson and Newell, 
1999) and                   
 
                     βα += airairla QQk )(                       (2) 
 
where the constants α, β are equal to 3.34m-3 and 
3.54h-1, respectively. 
 
The third term in (1) denotes the respiration rate in 
the reactor. Although the respiration rate may 
rapidly change responding to fast changes of the 
influence or returned sludge flows the quantity Rr(t) 

changes much slower than So (t) (Brdys and 
Konarczak, 2001). There are another twelve 
nonlinear differential equations in the ASM1 model 
and eighteen in the ASM2d model needed to 
determine Rr(t), knowing the control input Qair(t), 
inflow Qin(t) and sophisticated information 
concerning parameters of the wastewater inflow to 
the plant. It means that the state-space model of the 
dissolved oxygen concentration is described by very 
high order nonlinear dynamics. Moreover, with 
phosphorus reactions taken into account the ASM2d 
model (Henze, et al., 1999) needs to be used that 
involves more than sixty parameters. Most of these 
parameters cannot be identified (they are not 
identifiable). Hence, the control problem is also 
under heavy uncertainty and adaptive or robust 
control technology is needed in order to handle the 
uncertainty. Regardless on obvious difficulties in 
developing good dynamic performance control 
algorithm, a dimension of the resulting controller 
would be not tractable for an efficient 
implementation as the So dynamics is fast. The 
uncertainty as it follows from (1) has an impact on 
So only through Rr. Clearly, So influences Rr. This 
cause-effect loop can be broken by considering Rr(t) 
as an external signal. Indeed, assuming Rr(t) is the 
disturbance input the overall dynamic model 
reduces to (1) and becomes the SISO nonlinear 
model. The control design problem becomes vastly 
simplified. A fundamental prerequisite to be 
successful in the controller design that is based 
entirely on (1) is an ability to obtain on-line good 
enough estimates of Rr(t) over required periods. 
Lindberg and. Carlsson (1996) have developed 
Kalman filter for estimation the respiration rate (the 
third term in (1)) together with parameters of the 
exponentially nonlinear function kLa(Qair). The 
estimates were used to feed their nonlinear 
controller designed based on a feedback 
linearisation. As there exist practically active 
constraints on the magnitude and rate of change of 
Qair the paper applies model predictive control 
technology (Maciejowski, 2001) for the DO 
controller design. Hence, a predictor of Rr is needed.  
As the problem has at least two-time scale structure, 
that is Rr changes much slower than So, Brdys and 
Konarczak (2001) have shown that (1) can be used 
to design the predictor suitable for the model 
predictive controller (MPC) design. Namely, 
discretising in time (1), the respiration value at t=kT, 
where T denotes the DO sampling rate, can be 
obtained in terms of the measured values of So at the 
time instants kT and (k+1)T and the control input 
applied at the k-th time step as: 
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As Rr(t) changes slowly this value is taken as the 
prediction )(ˆ

]1,1[, kR pHkkr +++ of Rr(k) over the horizon 

[k+1,k+1+Hp] in the model based optimisation 



 

     

problem that is solved by the MPC at (k+1)T. If clean 
measurements of Rr(t) are available the formula (3) is 
used to interpolate the values between the 
measurement time instants. The control input Qair(k) 
is a set-point to the reactor actuator that is to an 
aeration system and therefore the following 
constraints must be satisfied: 
 

   max)( airair QkTQ ≤     and       
                  max))())1(( airairair QkTQTkQ ∆≤−+         (4) 
 

where =max
airQ 3 m3h-1 and  =max

airQ∆ 0.3 m3h-1. 
 
The DO concentration can be measured on-line and 
the measurement error is small so that it is neglected. 
As the second and third terms in (1) are nonlinear the 
optimisation problem to be solved by MPC at (k+1)T 
is also nonlinear. The computing time needed to find 
the optimal sequence of inputs over a control horizon 
will limit ability of the controller response to fast and 
large changes of the disturbances or DO set-point. 
Next section proposes a method for increasing the 
controller computational efficiency. 
 
 

3. FUZZY MODEL PREDICTIVE 
CONTROLLER (FMPC) 

 
3.1 Takagi-Sugeno model of DO dynamics. 
 
The nonlinear DO dynamics described by (1) is 
linearised at three steady-state operating points 

3
1,0, )};{( =iliniliniair SQ   corresponding  to  Rr(t)=40gm-

3h-1 and Qout(t)=0.06m3h-1: (1;3.7747), (2;5.4214), 
(3;6.354). The three linear models obtained in this 
manner are combined into one fuzzy model of 
Takagi-Sugeno type (Passino and Yurkovich, 1998) 
giving a nonliner approximation of (1) over the 
control input range. Standard triangular membership 
functions are used that are illustrated in Fig. 2. 
 

 
Fig. 2. Membership functions for the fuzzy predictive 

controller. 
 
 
Fig. 3. compares responses of the fuzzy model and 
plant excited by a ramp input 3=airQ m3h-1 showing  
very good approximation accuracy. The piecewise 
linear approximation was found by applying a 
method of trial and error. First, two linear models 
were used leading to significant errors outside the 
regions close to the approximation points. Next five 
model were tried offering a bit better overall 
approximation. However, the computing time with 
this approximation is noticeably greater than with the 
three models. Hence, the three model based 

approximation was finally chosen as a good 
compromise between the solution suboptimality and 
computational efficiency 
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Fig. 3. Responses of the plant (discontinuous) and 

fuzzy approximation (continuous). 
 
 
3.2 The fuzzy controller 
 
The MPC controller is designed for each of the local 
linear models. The three controllers are run 
separately in parallel taking measurements from the 
plant and producing at time instants (k+1)T the 
control inputs ),1( +kQi

air i=1,2,3. The local linear- 
quadratic MPC’s outputs are blended as: 
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to produce the overall controller output that is 
applied to the plant at the time instant (k+1)T. 
 
The linear- quadratic constrained optimisations 
carried out in parallel by the local controllers is much 
faster than the nonlinear optimisation to be 
performed by nonlinear MPC. 
 
 

4. SIMULATION RESULTS 
 
Performance of the controller was investigated by 
computer simulation using real data records. 
 
The following parameters were used in the controller 
implementation: prediction horizon HP=8 and 
moving horizon HM=3. Hence, the control inputs 
were allowed to change their values during three time 
steps out of eight steps of the output prediction 
horizon at each time instant when the controller 
generates future actions. Three linear models were 
proved to be sufficient to approximate the real 
nonlinear plant. The simulations were performed 
using Matlab-Simulink software and the Model 
Predictive Control and Optimisation toolboxes. The 
sampling period was T=1h. . Initially, the actuator 
constraints were dropped.  
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Fig. 4. Tracking a train pulse under constant 

disturbance and no actuator constraints. 
 
 
The controller managed to achieve desired DO 
concentration under constant disturbance 
Rr(t)=40gm-3h-1 as it is illustrated in Fig. 4. 
 
An impact of the actuator constraints is shown in 
Fig.5. 
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Fig. 5. Tracking a train pulse under constant 

disturbance and the actuator constraints. 
 
 
The comparison between three MPC controllers each 
of them based on one linear model out of the three 
models used to design the fuzzy controller is 
illustrated in Fig. 6. 
 
Each linear-quadratic MPC controller operates well 
only within the set-point range corresponding to the 
linearisation point. The fuzzy controller shows good 
tracking performance over the whole range. 
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Fig. 6. A comparison of tracking performance of 

linear MPC´s and the fuzzy controller. 
 
Next an impact of rate of change of  Rr(t) was 
investigated. It was assumed that Rr(t)=r+Asin(t/6), 
where r=40 and A=0 and 20. 
 
Fig. 7. illustrates the results showing on decreasing 
tracking performance when the rate of change 
increases. An increase of the sampling rate with the 
allowed limits would improve the situation. This is 
illustrated in Fig. 8. 
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Fig. 7. Influence of the Rr(t) rate of change. 
 



 

     

DO Concentration [gm-3]   Rr(t)=40+10sin(t/6) , T=1 h. 

 
DO Concentration [gm-3]   Rr(t)=40+10sin(t/6) , T=0.5 h. 

 
DO Concentration [gm-3]   Rr(t)=40+10sin(t/6) , T=0.1 h. 

 
Time [h] 

 
Fig. 8. Influence of the sampling rate on the 

controller tracking performance. 
 
 

5. CONCLUSIONS 
 
The paper has proposed and validated by simulation 
a fuzzy model predictive controller for the dissolved 
oxygen concentration tracking in an activated sludge 
process. The controller maintains good performance 
achieving by previously proposed predictive 
controller that was based on an original nonlinear 
dynamics of the plant. On the other hand it is much 
more computationally efficient, hence is able to 
respond in time to fast changes of disturbances and 
large changes of the set-points. The fuzzy controller 
uses linear models that locally approximate the plant 
dynamics. On-line design of such models in a closed 
loop is currently under a research. Also different 
strategies for fuzzy blending of the local controller 
outputs are currently investigated. 
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