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Abstract: This paper describes a Generalized Minimum Variance Control (GMVC)
strategy for time varying systems (TVS). If GMVC applies to TVS, be conscious of
the time varying multiplication, such as multiplying that comprises of more than two
polynomials. In TVS, the time varying multiplication includes the time shift operator.
The calculation of time shift multiplication was proposed by Zhen. Li. However,
GMVC must be designed for servo systems. Then, the time varying multiplication
is composed of double formed time varying multiplication. This paper improves
the calculation of the double formed time varying multiplication. Furthermore, the
proposed GMVC is verified with the servo characteristic and the noise characteristic.
The simulation compares the proposed GMVC with the conventional GMVC for TVS.
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1. INTRODUCTION

Predictive control (Åström et al., 1977) is an
effective control method for plants including a
time delay. Minimum Variance Control (MVC)
(Wellstead and Zarrop, 1991), Generalized Min-
imum Variance Control (GMVC) (Clarke and
Gawthrop, 1979) and Generalized Predictive Con-
trol (GPC) (Clarke et al., 1987; Clarke and Mo-
hdadi, 1989) are predictive control strategies cal-
culating the output prediction by using polynomi-
als of plant model.

In Time Varying Systems (TVS), these strategies
can not achieve the desirable control object, be-
cause these strategies have mostly developed in
time invariant systems (TIS). Therefore, a control
law, which is matched to the time varying poly-
nomials, is necessary. However, by only matching
with time varying polynomials that are on-line,
the output can not track the reference signal yet.
The reason is that the control strategy has time
varying multiplications. These multiplications can
not accurately be calculated in TVS. O.P.Palsson

et. al., proposed a GPC (Palsson et al., 1993; Pals-
son et al., 1994) that avoids the multiplication
by without using the Diophantine equation for
TVS. Furthermore, M. Doi and Y. Mori designed
a servo GMVC (Doi and Mori, 2000) that based
on Palsson’s method. On the other hand, Z. Li
et. al., proposed MVC (Li et al., 1997; Li and
Evans, 1997) whose multiplication can be calcu-
lated by providing a time shift operator for TVS.

This paper designs a servo GMVC based on Z.
Li’s time shift calculation for TVS. In the case
that applied Z. Li’s method to GMVC, two further
problems must be solved: The first problem is
that GMVC, based on Z. Li’s method for TVS,
must calculate a double formed multiplication.
The cause of this double multiplication is that a
pre-compensator (Takahashi et al., 1998), based
on the internal model principle, is installed in the
GMVC to eliminate these offsets. However, the
double formed multiplication can not be yet calcu-
lated by using the Li’s method that deals with the
single multiplication. The second problem is that
the unique solution of the Diophantine equation
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can not be derived for all arrangements of the
polynomials in the Diophantine equation, because
the polynomials become noncommutative in TVS
(Koivo, 1980).

This paper proposes an algorithm for the double
formed multiplication and argues the existence of
the Diophantine solution in TVS.

Furthermore, in the case of TVS with coloured
noise, the Palsson type GMVC (Doi and Mori,
2000) does not entirely minimize the cost func-
tion. The Palsson type GMVC is the predictive
method (Palsson et al., 1993; Palsson et al., 1994)
without the Diophantine equation. This paper
compares the characteristic of coloured noise with
the Palsson type GMVC and the proposed GMVC
that improved the multiplication. The proposed
GMVC can sufficiently minimize the cost func-
tion.

2. PROBLEM FORMULATION

This paper adapts a pre-compensator (Takahashi
et al., 1998), based on the internal model princi-
ple, for the servo systems. In TVS, a Diophantine
equation of the conventional form is expressed as
follows:

Ck(q−1)P (q−1) = Ek(q−1)Ak(q−1) + q−jFk(q−1),

(1)

Ek(q−1) = 1 + e1(k)q−1 + · · ·+ ej−1(k)q−(j−1),

Fk(q−1) = f0(k) + f1(k)q−1 + · · ·+ fh(k)q−h,

h = max{n, np + l − j},
where Ek(q−1)Ak(q−1) of equation (1) is the time
varying multiplication. Z. Li introduced the algo-
rithm (Li et al., 1997; Li and Evans, 1997) for the
TVS multiplications.

On the other hand, the Diophantine equation for
servo systems is

Ck(q−1)P (q−1)

= Ek(q−1)∆Ak(q−1) + q−jFk(q−1), (2)

which includes a filter (∆ = 1 − q−1). However,
the multiplication of equation (2) is double form,
such as Ek(q−1)∆Ak(q−1). This paper develops
the calculation for the double formed time varying
multiplication.

Incidentally, the conventional Diophantine equa-
tion for TIS is expressed as follows:

C(q−1)P (q−1)

= ∆A(q−1)E(q−1) + q−jF (q−1), (3)

which sets the order (Takahashi et al., 1998) as
∆, A(q−1), E(q−1). However, in TVS, this order,
shown as equation (3), complicates deriving the
unique solutions Ek(q−1), Fk(q−1) for TVS from
this Diophantine equation. Therefore, the Dio-
phantine equation in TVS should be considered
the order of polynomials.

3. SERVO GMVC

Consider a Single Input Single Output (SISO)
system described by Controlled Auto Regressive
and Moving Average (CARMA) model

Ak(q−1)y(k) = q−jBk(q−1)u(k) + Ck(q−1)ξ(k),

(4)

Ak(q−1) = 1 + a1(k)q−1 + · · ·+ an(k)q−n,

Bk(q−1) = b0(k) + b1(k)q−1

+ · · ·+ bm(k)q−m,

Ck(q−1) = 1 + c1(k)q−1 + · · ·+ cl(k)q−l,

where u(k) and y(k) are the control signal and
the output signal, q−j stands for a delay time
of plant and ξ(k) is a white noise with the zero
mean and the variance σ2. In TVS, the coefficients
of polynomial of equation (4) are expressed as a
function of time k.

The generalized output in the cost function J =
E{h(k + j)2} of the servo GMVC, based on the
internal model principle, is expressed as follows:

h(k + j) = P (q−1)y(k + j) − R(q−1)w(k + j)

+ S(q−1)∆u(k), (5)

P (q−1) = 1 + p1q
−1 + · · ·+ pnpq

−np ,

R(q−1) = r0 + r1q
−1 + · · ·+ rnrq

−nr ,

S(q−1) = s0 + s1q
−1 + · · ·+ snsq

−ns,

where w(k + j) is the reference signal. If a pre-
compensator is not set, GMVC generates offsets
due to the control weight S(q−1). The GMVC law
is derived by minimizing the variance of the cost
function J = E{h(k+j)2}. At this point, y(k+j)
in the generalized output (5) must be predicted,
because it can not be observed at time k. Then,
the Diophantine equation (2) is introduced for
the prediction y(k+j). However, the Diophantine
equation (2) has the double formed time varying
multiplication Ek(q−1)∆Ak(q−1). Z. Li proposed
the algorithm (Li et al., 1997; Li and Evans, 1997)
for time varying multiplication. However it can
not deal with the double formed multiplication.
Therefore, this paper describes an algorithm for
the double formed time varying multiplication.

Theorem 1 The algorithm of the double formed
time varying multiplication Ek(q−1)∆Ak(q−1) in
the Diophantine equation (2) is defined as follows:



Ek(q−1)∆Ak(q−1)

=
j−1∑
r=0

1∑
s=0

n∑
t=0

{er(k)(−1)sat(k − s − r)q−(r+s+t)}.

(6)

Proof: Z. Li’s algorithm (Li et al., 1997; Li
and Evans, 1997) is applied two times for the
double formed time varying multiplication. First,
∆Ak(q−1), which is the single formed multipli-
cation into Ek(q−1)∆Ak(q−1), is calculated by
applying Z. Li’s time shift calculation

A′
k(q−1) = ∆Ak(q−1)

=
1∑

s=0

n∑
t=0

{(−1)sat(k − s)q−(s+t)}, (7)

where a new polynomial A′
k(q−1) is defined, such

as A′
k(q−1) = ∆Ak(q−1). The signature of Z. Li’s

algorithm is that the time varying polynomials
are shifted regarding time, such as at(k − s) of
equation (7). Figure 1 shows the structure of
multiplying the time varying multiplication with
∆Ak(q−1) and the output y(k). The coefficients
of polynomials, which are used in the conven-
tional multiplication without the time shift, are
expressed as the domain surrounded by the dot-
ted line. Calculating each y2 in figure 1 can not
derived from the polynomials that are surrounded
by the dotted line. Figure 1 confirms that the time
shift operator is necessary for the time varying
multiplication. Second, Ek(q−1)A′

k(q−1) is calcu-
lated again by time shift multiplication

Ek(q−1)A′
k(q−1) =

j−1∑
s=0

n+1∑
t=0

{er(k)a′
t(k − s)q−(s+t)}.

(8)

Figure 2 shows the multiplication Ek(q−1)A′
k(q−1)y(k).

Figure 2 also confirms that the time shift operator
should be installed into the calculation of the time
varying multiplication (8).

Finally, equation (6), that is expressed as a com-
pact form, is derived by is substituting equation
(7) for A′

k(q−1) in equation (8).
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The j steps ahead output P (q−1)y(k + j) of
equation (5) is

P (q−1)y(k + j)

= C−1
k+j(q

−1){Ek+j(q−1)∆Bk+j(q−1)u(k)

+ Fk+j(q−1)y(k)} + Ek+j(q−1)∆ξ(k + j),

(9)

Fig. 1. The structure of multiplying ∆A in TVS

Fig. 2. The structure of multiplying EA′ in TVS

which is calculated by using the Diophantine
equation (2). the control strategy of servo GMVC
is

{Ek+j(q−1)∆Bk+j(q−1)

+ Ck+j(q−1)S(q−1)∆}u(k)

= Ck+j(q−1)R(q−1)w(k + j) − Fk+j(q−1)y(k),

(10)

which is derived by substituting the predic-
tion P (q−1)ŷ(k + j) without the noise term
Ek+j(q−1)∆ξ(k + j) of equation (9) for the cost
function. Furthermore, the servo GMVC (10)
has a double formed time varying multiplication
Ek+j(q−1)∆Bk+j(q−1). This multiplication is cal-
culated with

Ek+j(q−1)∆Bk+j(q−1)

=
j−1∑
r=0

1∑
s=0

m∑
t=0

{er(k + j)(−1)s

× bt(k + j − s − r)q−(r+s+t)}, (11)

which is also solved by applying Theorem 1.

Notation: Noting that the Diophantine equa-
tion is formed, the order of polynomials are
Ek(q−1)∆Ak(q−1). If Ek(q−1)∆Ak(q−1) in Dio-
phantine equation (2) is transformed into ∆Ek(q−1)Ak(q−1)
as

∆Ek(q−1)Ak(q−1)

=
1∑

r=0

j−1∑
s=0

n∑
t=0

{(−1)res(k − s)



× at(k − s − r)q−(r+s+t)}, (12)

the Diophantine equation (12) has time shift op-
erator, such as es(k − s). In other words, when
the multiplication ∆Ek(q−1) is calculated, the
coefficients of Ek(q−1) are expressed as

∆Ek(q−1)

= 1 + {e1(k) − 1}q−1 + {e2(k) − e1(k − 1)}q−2

+ · · ·+ {ej−1(k) − ej−2(k − 1)}q−(j−1)

−ej−1(k − 1)q−(j−2). (13)

Then, the unique solution Ek(q−1) of the Dio-
phantine equation can not be derived, because
equation (13) has factors e(k), e(k − 1) at differ-
ent times. On the other hand, Ek(q−1)∆ that is
included in equation (2) is

Ek(q−1)∆

= 1 + {e1(k) − 1}q−1 + {e2(k) − e1(k)}q−2

+ · · ·+ {ej−1(k) − ej−2(k)}q−(j−1)

−ej−1(k)q−(j−2). (14)

Equation (14) has only factor e(k) at the same
time. Therefore, the unique solution of the Dio-
phantine equation as Ek(q−1)∆Ak(q−1) is easily
derived than the orders ∆Ek(q−1)Ak(q−1).

4. GMVC FOR TVS WITH COLOURED
NOISE

Consider the characteristic of coloured noise in
GMVC for TVS. In the coloured noise systems,
the degree of polynomial Ck(q−1) is expressed as
more than 1 degree.

4.1 Palsson method

O. P. Palsson proposed another predictive method
(Palsson et al., 1993; Palsson et al., 1994; Doi
and Mori, 2000) for TVS. This signature is that
the Diophantine equation is not used to avoid
the time varying multiplication. Figure 3 com-
pares the structure of predicting ŷ(k + 3) with
the Diophantine type method and Palsson type
method. Figure 3(a) confirms that the prediction
ŷ(k + 3) is directly derived from the Diophantine
equation and the past data. On the other hand, in
figure 3(b), the predictions, ŷ(k + 1) and ŷ(k + 2)
before time k + 3, must be calculated by refering
to the CARMA model (4) to derive the objective
prediction ŷ(k + 3).

(a)Diophantine method

(b)Palsson method

Fig. 3. The structure of the prediction ŷ(k + j)

4.2 Noise characteristic

This section verifies the effect due to the degree
of Ck(q−1) for the characteristic of coloured noise.
Note that this argument is not based on the servo
systems because this section want to confirm only
the effect of coloured noise.

First, in the case of applying the Diophantine
equation, the future output is

P (q−1)y(k + j)

= C−1
k+j(q

−1){Ek+j(q−1)Bk+j(q−1)u(k)

+ Fk+j(q−1)y(k)} + Ek+j(q−1)ξ(k + j),

(15)

where the noise term includes only the future
output because Ek(q−1) is j − 1 degrees.

Second, the Palsson method predicts the future
output y(k + j)

y(k + j) = −
min(n,j−1)∑

r=1

{ar(k + j)y(k + j − r)}

+ b0(k + j)u(k) + hp(k + j | k)

+
min(l,j−1)∑

s=1

{cs(k + j)ξ(k + j − s)}

+
l∑

t=j

{ct(k + j)ξ(k + j − t)}, (16)

which is directly derived from the CARMA model.
Equation (16) expresses that hp(k + j) is the data
of the observed output and control signals, the
fourth term cs(k+j)ξ(k+j−s) is the future noises



and the fifth term is the past and present noises.
In other words, if the degree of Ck+j(q−1) is more
than j degree, the past and present noises remain.
Furthermore, the first term ar(k + j)y(k + j − r)
in equation (16) is calculated by again refering
to the CARMA model (4). The future output
clause vanishs by iterating the above procedure.
However the past and present noise clause appear
in the case of including the coloured noise. In TVS
with coloured noise, GMVC with the Diophantine
equation is superior to the Palsson type GMVC
because the noise clause of the future output com-
prises only future values due to the Diophantine
equation.

5. SIMULATION RESULTS

This chapter presents some simulation results
to highlight the scheme of the proposed servo
GMVC. The TVS model is of the form (Li and
Evans, 1997):

y(k + 2) + a1(k)y(k + 1)

= u(k) + b1(k)u(k − 1) + ξ(k + 2) + c1(k)(17)

a1(k) =




1 + 0.135e−k,
20i − 2 < k ≤ 10(2i + 1) − 2,

−1 − 0.135e−k,
10(2i + 1) − 2 < k ≤ 20(i + 1) − 2,

b1(k) = 0.3[2 + cos(0.2πk + 0.4π)],

c1(k) =




0.9
k + 2
k + 3

,

20(2i − 1) + 3 < k ≤ 40i + 3,

−0.9
k + 2
k + 3

,

40i + 3 < k ≤ 20(2i + 1) + 3.

This model, such that the parameters sharp
change as step shape, is chosen to obviously verify
the efficient of the time varying polynomials. The
reference signal is changing at k = 20 from 0 to
1 and a load disturbance of the magnitude 0.2
occurs at k = 70. The delay time of the plant is 2
steps and the variance of noise ξ(k) is 0.01. The
weights of cost function are P (q−1) = R(q−1) = 1
and S(q−1) = 0.05. Note that these simulations
are calculated at various sample periods by using
the varying polynomials. Figure 4 shows the time
response based on the conventional GMVC and
figure 5 shows the result of the proposed GMVC.
While the output in figure 4 can not track the
reference signal, Figure 5 tracks it not only the
reference changing but also the load disturbance.
These results confirms that the multiplications
due to the time shift operator and the servo design
provide the remarkable effects for TVS. In the fol-
lowing, figure 6 and figure 7 compare the coloured
noise characteristic in TVS with the Palsson type
GMVC and the proposed GMVC. The results of

figure 6 and figure 7 show that the Palsson type
GMVC has larger variances. These variances are
the output signal and the control signal, such as
the input energy. Therefore the results confirms
the verification in sec.4.2 this results mean that
the proposed GMVC is effective in TVS.

6. CONCLUSIONS

This paper designed the servo GMVC for TVS.
The double formed time varying multiplication,
which appears in the servo mechanism, is solved
with the double time shift summation. The se-
quence of the time shift multiplication was clari-
fied by the diagram. In the Diophantine equation,
this paper pointed out that the structure should
be considered to easily derive the unique solu-
tion. Furthermore, this paper showed the condi-
tion that GMVC without the Diophantine equa-
tion can not minimize the cost function, while
the proposed GMVC entirely minimizes it. Then,
the coloured noise characteristic of the proposed
GMVC is superior to GMVC without the Dio-
phantine equation. The simulation confirmed that
the proposed GMVC realizes the sufficient re-
sponse property for TVS.

Fig. 4. The conventional GMVC in TVS
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