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Abstract: For distributed or infinite-dimensional systems, stability raises various difficulties.
One anomaly is that there can be two realizations, both approximately reachable and
observable, but one is exponentially stable and the other is not (unstable). Another is that
even the spectrum is not preserved among such realizations. The paper gives conditions
under which stability and spectrum are preserved for approximately reachable and observable
realizations. The result have much bearing on robust controller designs based on external
system description, e.g., H-infinity designs.
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1. INTRODUCTION dorational by requiring a strong notion of canonicity,
one can prove that the spectrum determines stability.
It is however left open whether other approximately

There are many anomalies for distributed parameter . )
y P reachable and observable still remain stable. The best

systems arising from the freedom of endowing dif- o RN ;
scenario in this situation is that once the system is

ferent topologies on the state space. It is known that .
even the spectrum is not preserved under various real_guaranteed to be externally (input/output) stable, then

izations, albeit approximately reachable and observ- all of its approximately reachable and observable re-

able (Fuhrmann, 1981). Another is the question of alizations are stable. One can then safely discuss in-
stability: it is generally not determined by the location ternal stability based on its external behavior (impulse

of spectrum, nor is it preserved for various different response, transfer function, etc.).

realizations, again all of them being approximately This paper gives conditions under which such notions
reachable and observable (Zabczyk, 1975; Zwart et.as spectrum and stability are preserved.

al, 1995). This is certainly a very undesirable situation

for many design methods based on external data such

as transfer functions, for examplE>° control theory. 2. PSEUDORATIONAL IMPULSE RESPONSES
For example, suppose that one has designed a con- AND THEIR REALIZATIONS

troller that guarantees? input/output stability. This

is typically the case with many/°° design methods. We start by defining the notions of time-invariant
While one may expect that it yields internal stability linear systems, pseudorational impulse responses, and
of the realization he is dealing with, it need not be their realizations.

guaranteed for distributed parameter systems. This IS\, what follows, we confine ourselves, without loss

the case even for such a familiar class of delay systems . - " i0 the sinale-inout sinale-output case
(Logemann, 1987). 9 Y gle-inp g p :

Generalization to the multivariable case can be easily
In (Yamamoto, 1988; Yamamoto, 1989) we have obtained by considering each component of the im-
shown that for a certain class of systems capledu- pulse response.



Let £&'(R_) denote the space of distributions having The mappingsy and h are calledreachability map
compact support contained in the negative half line and observability maprespectively.¥ is said to be
(—o0, 0]. Distributions such as Dirac’s delég placed approximately reachabl& ¢ has dense image, and
ata < 0, its derivatived’, are examples of elements in  observablef £ is one to one. It igopologically ob-
E'(R_). Animpulse response functidf (supp W C servableif h gives a topological homomorphism (i.e.,
[0,00)) is said to bepseudorationalf it satisfies the  continuously invertible when its codomain is restricted
following two conditions: to im h). X is weakly canonicailf it is approximately
reachable and observable; itianonicalif it is further
topologically observableX is said to be aealization

of an impulse respond&” if Hy = hg.

(1) W = ¢ txpforsomeq,p € £'(R_), where the
inverse is taken with respect to convolution;
(2) ordg™! = —ordgq, whereordq denotes the
order of a distributiory (Schwartz, 1966).
The definition above looks a little abstract and appears
to have little information needed to analyze linear sys-
the space$L*[—n, 0]},>o; itis the union of all these  tems. However, when there are certain “smoothness
spaces endowed with the finest topology that makes allhypotheses” satisfied, then it is immediate to write
injectionsj,, : L?[—n,0] —  continuous; see, e.g., down a differential equation description in the follow-
(Treves, 1967). Duallyl” := L? [0, 00) is the space ing form (Yamamoto, 1988):
of all locally Lebesgue square integrable functions

Let Q := limL?[—n, 0] denote theénductive limitof

with obvious family of seminorms: dx
. 12 i Ax(t) + Bu(t)
lolli={ [ lopar} . y(t) = Cal)

This is theprojective limitof spaceg L2[0, n]}nso. O whereA is the infinitesimal generator di(¢), and

is the space of past inputs, afids the space of future

putputs, with the understand_ing that lthe present time o)) = /o exp(—A8) Buo(t)dt
is 0. These spaces are equipped with the following o
naturalleft shiftsemigroups: h(z)(t) = C exp(At)z.

o) (s) i W(s+1), 8 < —t, 0 nge:;evapbriclni?ye::z;sjustlfy the terms reachability and

t o0, —t<s5<0, '
weNt>0,5<0. A systemX = (X, @, g, h) is said to beexponentially
stableif there exist positive constaut, 5 such that
(e7)(s) =(s+1t), v€L,t=0,s>0. (2) 1@(t)z]| < Ce™* ||| 3

An input/outputor aHankeloperator associated with For a pseudorational impulse respori$e = ¢~
an impulse response functidf’ is defined to be the p, one can always associate with it a topologically

continuous linear mappirdyy : @ — T defined by observable realizatiorb?? as follows (Yamamoto,
0 1988):
Hw (w)(t) = / W(t — 7)w(r)dr. Define X as follows:

X9:={x el |n(g*xx) =0}

wherer is the truncation t@0, co). It is easy to check
X1 is aoy-invariant closed subspace Bf To define

3¢P take thisX? as the state space with (restricted

to X ?) as its semigroup. Then defige 2 — X7 and

h: X% — T as follows.

Let us now introduce the notion of a (linear, time-
invariant) system.

Definition 2.1. A (linear, time-invariant) systert is
a quadruplé X, ®, g, h) such that

e X is a Banach space, anfl(t) is a strongly
ntin migr fin nit; -
CO- uous semigroup de _ed onit, g(w) =m(q xprw)
e g: Q) — X is acontinuous linear mapping such o
thatgo, = ®(t)g for all t > 0; h(z) = x (injection).
e h : X — T is also a continuous linear map

Sinceh is clearly a topological homomorphisiaZ?
satisfyingh®(t) = oh forall ¢ > 0. y Pood P

is topologically observable. It is approximately reach-
able if the pair(q, p) is further approximately coprime

Hw r (Yamamoto, 1988).

Q

g h Facts 2.2. (1) LetX?P be as above. The spectrum of
the infinitesimal generatad? of system¥:?? is

X given by



o(A7) = {A[q(A) = 0}. (4)

Furthermore, every point iar(A?) is an eigen-
value with finite multiplicity. The resolvent set
p(A?) is its complement.

(2) For each\ € o(AY), the generalized eigenfunc-
tions are of the form{e t tert ... "~ leMt),
wheren is the geometric multiplicity.

(3) The state spac&? is decomposed as

X1 120,T)® Xo

where X, is the linear subspace spanned by the
generalized eigenfunctions given as above.

3. PRESERVATION OF SPECTRUM

Let W = ¢! % p be pseudorational, and I& =
(X, ®,g,h) be a weakly canonical realization @f.
We then have the following commutative diagram:

Q Hw

r

J

X

I X

SinceX is observableh is injective, and furthey is a

topological embedding. We may thus consideas a
subspace oK ¢ (with finer topology) which in turn is
a subspace df.

Our question here is that under what conditions the
spectrum ofA? or the stability of¥%? is preserved. In
what follows, for simplicity of discussions, we always
assume thafq, p) is approximately coprime so that
34P js canonical.

Let us start with the invariance of spectrum.

Theorem 3.1Let Y be a weakly canonical realization
as above, andi the infinitesimal generator ob(t).
Suppose that for any € p(A%), X (considered as
a vector subspace df? as above) is invariant under
(M — A?)~1. Then

o(4) = (A7) = {A[¢(A) =0},

i.e., the spectrum is invariant.

(®)

Proof Let us first assumé(A) = 0. By extracting

the factor(s — )" (n is the algebraic multiplicity

of A in ¢(s)) from ¢(s), we see that the generalized
eigenspace corresponding o constitutes a finite-
dimensional subsystem ix%?. Since %7 is ap-
proximately reachable, this subspace is approximately
reachable, but because of the finite-dimensionality, it
is also exactly reachable. Due to approximate reach-
ability of 3, this subspace must be containedXn
Hence the characteristic equatighl — A)x = 0
also admits a solution iX'. Thus if §(A\) = 0, then

A€ o(A).

It suffices to prove that ifj(\) # 0 then it be-
longs to the resolvent set(A). Note thatX is in-

variant (A\I — A9)~!, and the induced mapping of

(M — A%)~! on X is precisely(A\] — A)~! (see the
next block diagram).

(M — A9)~1

X1 X1

h h

X X

(A —A)~L
It suffices to prove the continuity A7 — A)~*. Sup-
pose thatr,, — = in X and(Al — A)~'z,, — y also
in X. Thenh(x,) — h(x) and h(\] — A)~tx,)
— h(y) in X7 Since h is a continuous embed-
ding that commutes with shifté,((A\ — A)~'z,) =
(M — A?)~1h(x,). Hence by the continuity of
(A — A9)~! (because € p(A9)), h(A — A)~tz,)
— (M — A9 th(z) = h((M — A)"'z). By the
uniqueness of a limity((A\I — A)~1z) = h(y). Since
h is injective, (\I — A) "1z y. This means that
(M — A)~! has closed graph. By the closed graph
theorem (Yosida, 1964\ — A)~! is also contin-
uous. O

The preservation of spectrum depends on the invari-
ance ofX under(\I — A9)~!. A condition that guar-
antees this is given as follows. In the following lemma,
we considerX as a subset ok 9.

Lemma3.2Let ¥ = (X,®,9,h) be as above.
Suppose0 € p(A?), X C AYX N D(A?))
and D((A%)?) < X. Then X is invariant under
(M — A9)~ forany\ € p(A9).

Proof By hypothesisy = A%w for somew € X N
D(A?). Take any\ € p(A?) andy in X. We want to
solve (A — A%)y = z for somez in X. This means
thatx := (A — A7)~ !y € X. Observe

z—w= (N — A"y — A1y
= A\ — A9)~1Aa 1y

by the well-known resolvent identity (Yosida, 1964).
Now (A9)~'y € D(A?) by hypothesis. Then

(M — A9)~1 4971y € D((A9)?), which in turn is a
subset ofX. This impliesz € X. O

Remark 3.3.As is clear from the above proof,
p(A?) may be replaced by any € p(A?) by suitably
shifting the formulas. Sinc& (or h(X) to be pre-
cise) is a shift invariant subspace &, it is usually
confined by some regularity assumptions. Sinte
is a differential operator (becausg is the left shift
(Yamamoto, 1988)), assuming C A%(X N D(A?))
is quite possible in most cases. Aldo((A%)?) C X
may be satisfied in many cases.



Example 3.4.As an example where the condition
above is easily satisfied, consider

Takes = —(1 1)T. Then
X = {z(t)|x € X7 and continuous C X1 p (logr)/(n+1)

m —B(mn+1)T —pBt
It is known that the topology oK ¢ is determined by Cr™ < Ce < Ce™™.
finite-time _dat_a ono, T'] for someT" > 0 (Yamam(_)to, _ This clearly implies (3). O
1988). This is a consequence of pseudorationality _ _
and easily seen to carry over f§ also. Then the LetX = (X, ®,g,h) be a weakly canonical realiza-

hypotheses of Lemma 3.2 are clearly satisfied. tion of a pseudorational impulse respofige= ¢~
p. Suppose that.?? is exponentially stable. Thes

satisfiesr,(ocr) < 1 for someT. If this number
remains the same fab(7'), then the exponential sta-

4. PRESERVATION OF STABILITY bility would follow.

Preservation of stability presents a more subtle andTo explore the situation, we start with the following
difficult problem. rather simple result.

Let us first start with the stability ot Proposition 4.4.Let W = ¢~ '+ p andX. be as above.

Suppose thakl satisfies the hypotheses of Theorem

3.1. Suppose further thal?? is exponentially sta-

ble, and®(7T") has no continuous spectrum for some

sup{Re | A € d(A)} < 0. (6) T > 0. Thenr,(®(T)) < 1, and hence is also
exponentially stable.

Theorem 4.1((Yamamoto, 1991)»%? is exponen-
tially stable if and only if

In other words, there exists> 0 such that

Re A < —cforall A such thag(A) = 0. Proof By hypothesis, the spectrum of is pre-

o ) served,
Remark 4.2.Note that for infinite-dimensional sys-

tems,W € H*(C,) is not enough to guarantee (6) o(A) = o(A7)

nor exponential stability; see (Logemann, 1987). e ) _ )
and every pointir(A) is an eigenvalue. Thatis, there

are no residual or continuous spectrum. By the spec-

The question here is that under what condition this tral mapping theorem for semigroups (Pazy, 1983), we
stability property is preserved. iV were not pseu-  must have

dorational, this is not true. For counterexamples, see
(Fuhrmann, 1981; Zabczyk, 1975; Zwart et. al, 1995). Py (®(T)) C exp(P,(A)T) U{0},
Part of the difficulty here is due to the fact that the
spectral mapping theorem is incomplete for continu-
ous spectrum for semigroups. This will become clear
in what follows.

whereP, (V') denotes the point spectrum of an opera-
tor V. Since there is no residual spectrum ford (7'
does not have residual spectrum either (Pazy, 1983).

Finally, since®(T") is assumed not to have continuous
Let us start with the following lemma: spectrum,

Lemma 4.3Let S = (X, ®(t), g, h) be a linear sys- o(®(T)) C exp(P>(A)T) U{0}.
tem. Then it is exponentially stable if and only if there
existsT' > 0 such that the spectral radiug(®(T))
satisfies

SinceX?? is exponentially stable, the right-hand side
is contained ir{z | |z| < 1}. Hencer,(®(T)) < 1
and the result follows. O

ro(&(T)) < 1. (7) The drawback here is the assumption on the continu-

ous spectrum. We shall elaborate more on this in what
Proof Let®(t) be exponentially stable. Then by (3) follows.
there existsT" > 0 such that||®(T)| < 1. Since

1B(T)|| < 0 (B(T)), (7) follows One case is thak(T") is compact. This is the case with

retarded delay-differential equations, and an abstract

Conversely, suppose (7) holds. Sincg(®(T)) = characterization for such systems has been given in

lim,, . ||®(T)"| (Yosida, 1964), there exists suffi- (Yamamoto and Hara, 1992). Assuming this, we read-

ciently largen such thatr := ||®(T)"|| < 1. Then ily have the following:

[@(nT)|| = [|2(T)"|| < 1. Let

Ci= max |0(0)] Theqrem 4.5.Let_2 be as above, and suppose that
" 0<t<nT ' 3%P js exponentially stable. Suppose also thasat-

It then follows that, ift = mnT + 6 for0 < 0 < nT, isfies the hypotheses of Theorgm 3.1 and m@). s
compact for some > 0. ThenX is also exponentially

(2] = |P(mnT + 0)|| = ||(nT)™®(0)|| < Cr™. stable.



Proof Since ®(¢) can have only point spectrum

other than0, the spectral mapping theorem readily

implies the conclusion. O

Let us now prove the following main result:

Theorem 4.6.Let X be a weakly canonical realization

as above. Suppose that? is exponentially stable,
and hence, (or) < 1 for someT" > 0. Suppose also
that(\I — ®(7T")) ! leavesX invariant for any\ with
[A| > . (or). ThenX is also exponentially stable.

Proof Consider the commutative diagram.

()\I — O'T)i1

X1 X1

h h

Y or—em) T
We prove that(A\I — ®(7))~! is continuous with
respect to the topology of.

Suppose that,, — zin X and(Al — (7)) 'z, —

y also in X. Then h(z,) — h(z) and h((AI —
or)~'z,) — h(y) in X9, Sinceh is a continu-
ous embedding that commutes with shiftg(\] —
®(T)) 'z,) = (A\[—or) 'h(z,). Hence by the con-
tinuity of (\] —o7) ! (because € p((AI—o7)~1)),
h(()J—fI)(T))—lxn) — (M—or) " h(z) = h(M -

fI)(T))— x). By the uniqueness of a limit((AI —
o(T)) 1 ) h(y). Since h is injective, (\[ —
®(T))" 'z = y follows. This means that\l —
o(T))~ ! has closed graph. Then, again by the closed

graph theorem (Yosida, 1964\ — ®(T))~! is also
continuous. O

The following example shows an easy case where the

hypothesis of the above theorem is satisfied.

Example 4.7.Suppose there exists a closed operator

F such thatF'op = o F, andX = D(F), i.e
X={reX?: Fz e X1}.

SinceForx = opFz € X9, X is op-invariant. So
let®(T') = o|x, and denote it by the same symbel
since no confusion can arise. It also follows thaf —
or)F = F(Mo7) and hence’(Mor)~! = (A —
or)~LF.Then forr € X,

F(Mor) 'z = (M —op) ' Fz € X9

becausel'z € X% ThusX is (AMor)~l-invariant,
and the condition of Theorem 4.6 is satisfied.

A typical case forF' is the differential operatod/dt
which happens to be the infinitesimal generatos of

5. DIFFICULTY IN SPECTRAL RESULTS

section we see where the difficulty is in removing this
assumption.

Recall from Facts 2.2 that the state spAceis decom-
posed as the direct sum @f[0,7] and the closure

of the spaceX? spanned by the eigenfunctions of
form t™eM. Since the semigroup;, is the left shift,

the component?[0, T is irrelevant to stability, since
any of its element will vanish after the transition in
some time. We thus assum& = X, i.e., it is eigen-
function complete. The following lemma then shows
that eigenfunction completeness is preserved among
weakly canonical realizations.

Lemma5.1l.LetY = (X, ®, g, h) be a weakly canon-
ical realization. Suppose thai?? is eigenfunction
complete. Therx is also eigenfunction complete.

Proof We know thatX, is contained inX. In par-
ticular, it is a subset of2/ ker Hyy, since such a quo-
tient gives a weakly canonical realization (Yamamoto,
1988). This realization, with the quotient topology
induced from(2, has the finest topology among all
weakly canonical realizations. Furthermor&, is
also dense there. This can be seen by following the
same procedure in (Yamamoto, 1989). Then, since
0/ ker Hy, can be densely embeddedin X is also
dense inX. O

We now assume thd(s) has globally bounded multi-
plicity, say1. This implies

X, = span{eM?t, et .}
Now let us see what can be said about the stability of
Y under the assumption of the stabilityXf-?, but not
necessarily invariance of under(\I — ®(¢))~!

By Lemma 4.3 there exist§' > 0 such thatr :=
re(or) < 1. Again by Lemma 4.3 it would suffice
to show that, (®(T)) < 1.

Put

Mt et eAnt) C X,

9

Takez := Y"1 | x;e'. Then

T) = 3w,
=1

If we take{e 1t e?2t, ... e*!} as a basis, this oper-
ator is expressed by matrix multiplication

X, :=span{e

I €>\1T 0o --- 0 Iy
T2 0 e’ T2
| , : (8)
0 o - 0 :
In 0 s €>\nT T,

Observe that the norm induced pn, . .. , 2,7 from
that of X need not be Euclidean nor of any familiar
form, in general, but since thipologyof a finite-

We needed an extra condition of the invariance of dimensional subspace is invariant, the spectral radius

X under (Al — ®(7))~! in Theorem 4.6. In this

of the above matrix representation ®{7") remains



invariant under any change of such a topology en- Yosida, K. (1964).Functional Analysis Springer-
dowed onX. Thus, Verlag.
1o (®(T)|x,) < max [eN7T Zabczyk, J. (1975). A notg ony-semigroupsBull.
’ 1<i<n I’Acad. Pol. de Sc. Serie MatR3, 895—-898.

S To (UT)-

Itlooks as though this would imply, (®(7)) < 1, but
actually not. This guarantees that there is no point in
the spectrum greater thap(or) when the operator is
restricted toX,, but X is only a dense subspace, and
this does not guarantee that there exists no continuous
spectrum point fod(T") with A > r, (o) when this
operator is considered on the whole spatdn other
words, the dense subspa&g has little control over
the whole spectrum, although the operator itself looks
rather innocent as (8). This is why we need some
extra conditions to prove stability as in Theorem 4.6
or Proposition 4.4.

6. CONCLUDING REMARKS

We have given some conditions under which spectrum
and/or stability is preserved. It is desirable to replace
the assumptions on the invariance ®funder perti-
nent operators, but it is a theme for future study.
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