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1. INTRODUCTION

In the paper the problem of on-line continuous-time
estimation of the parameters (frequencies) of a poly-
harmonic function is considered. Given problem is a
classical problem of the systems theory. A nonlinear
dependency of the function on its parameters prevents
using standard, well-known methods of adaptive con-
trol and identification (Fomin, 1981; Fradkov, 1999;
Anderson, 1986), since a presentation of periodic
function as output of dynamic system leads to the
problem of a simultaneous estimation of the state vari-
ables and unknown parameters, that presents the espe-
cial difficulty in continuous-time. In the last papers
dedicated to the given problem (Regalia, 1995; Hsu, et
al., 1997) the estimation algorithms of the frequency of
the measured sinusoidal signal )sin( ϕω += tAf  were
proposed. However those algorithms can not be devel-
oped for an estimation of parameters of a polyhar-
monic signal.
The solution of the considered problem can find the
wide practical application in self-learning of robotic

systems (Miroshnik et, al., 1994) and adaptive noise
damping systems (Nikiforov, 1997; Pogromsky et, al.,
1997). For example, the problem of overcoming the
function uncertainties in control laws arises from the
design of mobile robot control systems for a motion
along physically detectable, but analytically unknown
paths (border of physical object). Solution of this
problem is based on the using of a strategy of self-
learning and an algorithm of approximation of the un-
known periodic functional dependences (Lyamin, et
al., 1998).

In the paper analytical conditions of existence of the
solution are presented for the case of on-line continu-
ous-time estimation of parameters of  a polyharmonic
function. The design procedure of the estimation algo-
rithm is proposed. Presented results were obtained on
the basis of adaptive systems theory and identification
(Fomin, 1981; Fradkov, 1999; Anderson, 1986),
mathematical theory of stability as well as approaches
of the linear optimal control (Kwakernaak, 1997; Kal-
man, 1964).
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2. STATEMENT OF THE PROBLEM

Given polyharmonic function (signal)
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where nnn BBAAC ωω ,,,,,,,,, 1110 KKK  are unknown
parameters.

The considered problem is to find an adaptation algo-
rithm generating estimate of the unknown parameters
on the basis of current values of the function )(tf  and
establish conditions of the algorithm efficiency.

The solution of the above stated problem is founded on
the basis of the following assumptions:

1) the number n  is known;
2) the vector-function
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is strongly integral nondegenerate. In other words,
there exist positive numbers βL, , such that
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for any 0>t .

3. DYNAMIC MODELS OF THE
POLYHARMONIC FUNCTION

In this section we present analysis of properties of dy-
namic models of the polyharmonic function (1). To get
the dynamic model consider the m -dimensional vec-
tor-function )()( tFt =∗ξ  and the constant vector

T
m ],,[ 1 θθθ K= , which components mθθ ,,1 K  satisfy

the identity
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where 12 += nm , s  is a complex variable. Then dif-
ferentiating the vector - function )(t∗ξ  and taking into
account the relations (1), (2) and (4) we find

∗∗∗∗ +Γ=Γ= ξθξξξ Tb0
& , (5)

∗= ξTcf , (6)

where 
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Thus, it is possible to consider the function )(tf  as the
particular solution of the system of differential equa-
tions (5), (6). In other words, function )(tf  may be
presented in the form

)0()exp()( ∗Γ= ξtctf T .

Lemma 1. Let the matrix
12

321 ... −Γ++Γ+Γ+= m
mkkkIkT  be nonsingular.

Then there exists transformation of coordinates such,
that the model (5), (6) is equivalent to a system

ξξ Γ=& , (7)

ξTkf = , (8)

where T
mkkkk ],,,[ 21 K= , ∗

−= ξξ 1T .

Proof.  Let the matrix T be nonsingular, then differen-
tiating vector ξ , we obtain:

ξξξξ TTTT Γ=Γ== −
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Considering the equation
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we obtain

ξξ Γ=& .

By force of structure of the matrixes c , Γ  we obtain

ξξξ TTT kTccf === ∗

Remark. It should be noted that by appropriate choice
of the coefficient 1k  we may provide nonsingularity of
the matrix T . The last is satisfied under the condition

ikk >>1  for mi ,2=∀ . Really if we present matrix
T  in the form

DIkT += 1 ,

where elements of the matrix
12

32 ... −Γ++Γ+Γ= m
mkkkD  are limited numbers,

then under  the condition ikk >>1  we have that
0det ≠T .

Lemma 2. Let the vector Pbk ρ=  and the matrix

0>= TPP  be a solution of Riccati equation

TTT ccPPPbbPP −−=−Γ+Γ αρ 200 , (9)

where  0>α . Then
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Proof. Let us consider the matrix TbkIG −+Γ= α0 .

It follows from the structure of matrixes cb,,0Γ  and
the asymptotic properties of the solutions of Riccati
equation (9) (Kwakernaak, 1997; Kalman, 1964), that
the characteristic polynomial of the matrix G  under

∞→ρ  asymptotically approaches the polynomial
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where m2 ρω = , 0>iα  ( 1,,1,0 −= mi K ) are the
coefficients of the polynomial (11) under 1=ω . From
the relation (11) we find that elements ik  ( mi ,,1K= )
of the matrix k  under ∞→ρ  asymptotically ap-

proach the numbers m
im

i
2

1

1
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− ρα  ( mi ,,1K= ) and, con-

sequently, the limiting relation (10) is fulfilled. 
Right now using above lemmas we will formulate and
prove the main result of this section.

Theorem 1. Let the vector Pbk ρ=  and the matrix

0T >= PP  be a solution of Riccati equation

TTT ccPPPbbPP −−=−Γ+Γ αρ 200 , (12)

where 0,0 >> αρ  and T
mkkkk ],...,,[ 21= . Then

there exists a number 0ρ  such that the matrix T is
nonsingular.

Proof. Using results of lemma 2, it is easy to show that
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1
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ρ
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Then there exists 00 >ρ  such that we have

ikk >>1  mi ,2=∀ ,

under 0ρρ ≥  and, consequently, taking into account
the remark, the matrix T  is nonsingular. 

4. DESIGN OF THE ESTIMATION ALGORITHM

Choose parameter ρ  to guarantee the nonsingularity
of the matrix

12
321 ... −Γ++Γ+Γ+= m

mkkkIkT ,

where mkkk ,,, 21 K  are elements of the vector

Pbk ρ= , matrix 0T >= PP  is the solution of Riccati
equation (12). Then the algorithm for estimation of
functions )(tf  takes the form
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ξ̂ˆ Tkf = , (14)

where ξ̂  is a current estimation of the vector )(tξ  and

f̂  is a current estimation of the polyharmonic function

)(tf , θ̂  is an estimation of the vector θ  and the
number 1>µ .

For tuning the vector of the estimation θ̂  of unknown
parameters θ  we will use the algorithm of adaptation
(Fomin, 1981; Fradkov, 1999)

)ˆ(ˆˆ ffξK a −=θ& , (15)

where 0>= T
aa KK  is a matrix of constant coeffi-

cients.
Using equations (7), (8) and (13) - (15) we obtain the
model of deviations
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To prove the main result of this paper it is needed to
set the following fact.

Lemma 3. Let the vector-function (2) be strongly in-
tegral nondegenerate. Then the state vector )(tξ  of the
system (7) is strongly integral nondegenerate.

Proof.  Consider the chain of equalities
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where λ  is minimum eigenvalue of matrix
TTT ))(( 11 −− .

The conditions of asymptotic stability of solution
0

~
=ξ , 0

~
=f  and 0~

=θ  of the systems (16), (17) are
given in the following theorem.

Theorem 2. Let the vector-function (2) be strongly
integral nondegenerate, then there exist numbers

0>ρ  and 1>µ , such that solution 0
~
=ξ , 0

~
=f  and

0~
=θ  of the systems (16), (17) are uniformly asymp-

totically stable on the whole.
Proof. Let us consider the Lyapunov function
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Differentiating (18) by force of the equations (16)-
(17), we obtain
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equations (12), (19) we find that
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From above inequality it follows that there exist num-
bers 0>ρ  and 1>µ , such that
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ρ
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where 0>δ . Thereby the solution 0
~
=ξ , 0

~
=f  and

0~
=θ  of the systems (16), (17) are Lyapunov stable.

Integrating inequality (22), it can be seen that
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then the function )(~ tξ uniformly continuous and, con-
sequently, according to Barbalat theorem (Popov,
1970)
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Then from (23)-(25), we find that 0~lim =
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since by force of the lemma 3 the vector-function )(tξ
is strongly integral nondegenerate, we have
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 (Fomin, 1981; Fradkov, 1999).

Substituting the found values θ̂  to the equation (4) we
discover the unknown quantitative parameters iω .

5. CONCLUSION AND SIMULATION RESULTS

To illustrate the possibilities of the algorithm presented
above we consider the problem of estimation of the
function

tACf ωsin0 += , (26)

and its parameters 10 === ωAC .
For given functions the models (13), (14) take the
forms

21
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where 321
ˆ,ˆ,ˆ θθθ  are the estimations of parameters
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21 =−== θωθθ  and supplied by the algo-
rithm (15)
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Choose the coefficients 1541 =k , 662 =k , 123 =k

(for 1=α  and 410=ρ  see equation (12)) to guarantee
the nonsingularity of the matrix T , the number

1,1=µ , and the coefficients of the adaptation
50321 === aaa kkk . Results of the simulation are

illustrated on time-diagrams of the estimations

321
ˆ,ˆ,ˆ θθθ  (fig. 1) and the error f

~
 (fig. 2). The results

demonstrate convergence of f
~

 to zero and the esti-

mates 321
ˆ,ˆ,ˆ θθθ  of parameters 321 ,, θθθ .

Fig. 1. Processes in a system identification: estimations
of parameters.



Fig. 2. Processes in system identification: signal of the
error f

~
.
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