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Abstracts: The problem of on-line continuous-time estimation of parameters of a poly-
harmonic function is considered. The analytical conditions of existence of the solution are
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sented results were obtained on the basis of the theory of adaptive systems and identifi-
cation theory, mathematical theory of stability as well as approaches of the linear optimal
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1. INTRODUCTION

In the paper the problem of on-line continuous-time
estimation of the parameters (frequencies) of a poly-
harmonic function is considered. Given problem is a
classical problem of the systems theory. A nonlinear
dependency of the function on its parameters prevents
using standard, well-known methods of adaptive con-
trol and identification (Fomin, 1981; Fradkov, 1999;
Anderson, 1986), since a presentation of periodic
function as output of dynamic system leads to the
problem of a simultaneous estimation of the state vari-
ables and unknown parameters, that presents the espe-
cial difficulty in continuous-time. In the last papers
dedicated to the given problem (Regalia, 1995; Hsu, et
al., 1997) the estimation algorithms of the frequency of
the measured sinusoidal signal f = A4sin(w?f + @) were

proposed. However those algorithms can not be devel-
oped for an estimation of parameters of a polyhar-
monic signal.

The solution of the considered problem can find the
wide practical application in self-learning of robotic

systems (Miroshnik et, al., 1994) and adaptive noise
damping systems (Nikiforov, 1997; Pogromsky et, al.,
1997). For example, the problem of overcoming the
function uncertainties in control laws arises from the
design of mobile robot control systems for a motion
along physically detectable, but analytically unknown
paths (border of physical object). Solution of this
problem is based on the using of a strategy of self-
learning and an algorithm of approximation of the un-
known periodic functional dependences (Lyamin, et
al., 1998).

In the paper analytical conditions of existence of the
solution are presented for the case of on-line continu-
ous-time estimation of parameters of a polyharmonic
function. The design procedure of the estimation algo-
rithm is proposed. Presented results were obtained on
the basis of adaptive systems theory and identification
(Fomin, 1981; Fradkov, 1999; Anderson, 1986),
mathematical theory of stability as well as approaches
of the linear optimal control (Kwakernaak, 1997; Kal-
man, 1964).



2. STATEMENT OF THE PROBLEM

Given polyharmonic function (signal)

n n
f@®=C, +ZA[sina)it+ZB[cosa)[t, 1)
i=1 i=1

where C,,4,,...,4,,B,,...,B,,0,,...,0, are unknown

2 4tn n

parameters.

The considered problem is to find an adaptation algo-
rithm generating estimate of the unknown parameters
on the basis of current values of the function f(¢#) and

establish conditions of the algorithm efficiency.

The solution of the above stated problem is founded on
the basis of the following assumptions:

1) the number n is known;
2) the vector-function

FO=lro.r0.r?0...r0 @

is strongly integral nondegenerate. In other words,
there exist positive numbers L, £, such that

t+L

j F(s)FT (s)ds = I 3)
forany ¢>0.

3. DYNAMIC MODELS OF THE
POLYHARMONIC FUNCTION

In this section we present analysis of properties of dy-
namic models of the polyharmonic function (1). To get
the dynamic model consider the m -dimensional vec-
tor-function £&,(¢)=F(¢) and the constant vector

92[91,...,0m]T, which components d,,...,0,, satisfy
the identity
s"—0,s" " —.. . —0,5-0, =
=s(s?+0l)-...- (s +w}), 4)

where m=2n+1, § is a complex variable. Then dif-
ferentiating the vector - function &, (¢) and taking into
account the relations (1), (2) and (4) we find

&, =T¢& =T & +b07E,, Q)
f=c"é,, (6)
_ . ) L
0 1 0
where Ty=|: : : . |, b=|i], c=|:
0 0 0 0 0
_0 0 0 0_ 1] _0_

Thus, it is possible to consider the function f(¢) as the

particular solution of the system of differential equa-
tions (5), (6). In other words, function f(#) may be

presented in the form

f@©)=c" exp(TD)&.(0).

Lemma 1. Let the matrix
T =k +ky[ +k;0% +...+k,T™" be nonsingular.
Then there exists transformation of coordinates such,
that the model (5), (6) is equivalent to a system

E=T¢, (7)
f=k"é, (8)
where k=[k,k,,....k, 1", E=T7"&,.

Proof. Let the matrix T be nonsingular, then differen-
tiating vector &, we obtain:

E=T7¢, =17'rE, =T7'TTE
Considering the equation

T'TT =T7'0(k I + kol + ko T2 4+ 4k, T ) =
=Tk + kT +k, T2 4+ k, D" DO =T7'TT =T

we obtain
E=T¢.
By force of structure of the matrixes ¢, I" we obtain
f=cle, =c"réE=kTém

Remark. It should be noted that by appropriate choice
of the coefficient k&, we may provide nonsingularity of

the matrix 7 . The last is satisfied under the condition
|k1| >> |ki| for Vi=2,m. Really if we present matrix

T in the form
T'=kil+D,

where elements of the matrix
D=k, +k;T% +...+k,[™" are limited numbers,
then under the condition |k1|>> |ki| we have that
detT #0.

Lemma 2. Let the vector k= pPb and the matrix

P=P" >0 be a solution of Riccati equation
[JP+Pl,— pPbb" P=-2aP-cc", )
where «a > 0. Then

T
lim K =cc!
p>o P

(10)



Proof. Let us consider the matrix G=T, +al —bk’ .

It follows from the structure of matrixes I),b,c and
the asymptotic properties of the solutions of Riccati
equation (9) (Kwakernaak, 1997; Kalman, 1964), that
the characteristic polynomial of the matrix G under
p — oo asymptotically approaches the polynomial

(7 2i-1
m J E+ 3 Z2
a(s)zH s —we "
m m—1 m—1 m
=s"+a, 0" +.. . +to0" s+ay0”, (11)

where o = 2'{/;, a;>0 (i=0,1,...,m—1) are the
coefficients of the polynomial (11) under @ =1. From
the relation (11) we find that elements k; (i=1,...,m)

of the matrix k& under p— oo asymptotically ap-
m+1-i

2m

proach the numbers «;_; p (i=1,...,m) and, con-

sequently, the limiting relation (10) is fulfilled. ®
Right now using above lemmas we will formulate and
prove the main result of this section.

Theorem 1. Let the vector k= pPb and the matrix

P=PT >0 be a solution of Riccati equation
r’p Tp_ T
o P+ Ply— pPbb’ P=-2aP —cc", (12)

where p>0,a>0 and k=[k1,k2,...,km]T. Then
there exists a number p, such that the matrix 7 is
nonsingular.

Proof. Using results of lemma 2, it is easy to show that

Jim X _ Vi=2,m.
P ko

Then there exists p, >0 such that we have

ky>>k Vi=2,m,

under p = p, and, consequently, taking into account
the remark, the matrix 7' is nonsingular. B

4. DESIGN OF THE ESTIMATION ALGORITHM

Choose parameter p to guarantee the nonsingularity
of the matrix

T=kI+k,D+k;0% 4. +k, ™,

where ki, k,,....k
k= pPb , matrix P=P" >0 is the solution of Riccati

n are elements of the vector

equation (12). Then the algorithm for estimation of
functions f(¢) takes the form

E=(Ty +00T)E+ pub(f - J). (13)

A

f=k"E, (14)
where 52 is a current estimation of the vector £(¢) and

f is a current estimation of the polyharmonic function

f(@, 6 is an estimation of the vector € and the
number g >1.

For tuning the vector of the estimation 6 of unknown
parameters 6 we will use the algorithm of adaptation
(Fomin, 1981; Fradkov, 1999)

0=K,(/- 1), (15)

where K, =K! >0 is a matrix of constant coeffi-

cients.
Using equations (7), (8) and (13) - (15) we obtain the
model of deviations

E=Ty+b0" —ubk"E+bETH, f=k"E, (16)
6=-K,:ET (17)

where fzf—j;, E:g‘—ff, 0=0-0.
To prove the main result of this paper it is needed to
set the following fact.

Lemma 3. Let the vector-function (2) be strongly in-
tegral nondegenerate. Then the state vector £(¢) of the

system (7) is strongly integral nondegenerate.

Proof. Consider the chain of equalities

t+L t+L t+L

[FOFT ()ds = [5.(90] (s)ds = [Te)ET ()T ds

The matrix 7 is nonsingular and

t+L t+T

[e@e" ()ds =17 [Fs)F" (s)ds(r™)" 2
2 p@ T 2p 21,

where A is minimum eigenvalue of matrix
T

The conditions of asymptotic stability of solution
E =0, f=0 and 0 =0 of the systems (16), (17) are
given in the following theorem.

Theorem 2. Let the vector-function (2) be strongly
integral nondegenerate, then there exist numbers

p >0 and u >1, such that solution 4?:0, }:0 and

6 =0 of the systems (16), (17) are uniformly asymp-
totically stable on the whole.
Proof. Let us consider the Lyapunov function

V=ETPE+0T(K,p)'6. (18)



Differentiating (18) by force of the equations (16)-
(17), we obtain

V=ET@IpP+Pr)é +
+ETPETG +0TET PE - 0TEDT PE — (19)
—ETPpETY

where T, =T, +5(6 — k)" . Taking into account the
equations (12), (19) we find that

V=ET(TI P+ Pry —2upPbb” P+ PbO” +0b" P)E <
<ET(=2aP - (u+&)pPbb" P - (20)
—cc” +PbOT + 06T P)E

where &= —1. Since
E(op" P+ PbeT)Esz[pﬂPbbTmieerJf ,
pu

then the inequality (20) takes the form
v <E7(-2aP - (u+£)pPbbT P+ puPbb” P +

+L99T}E= ET(— 2ap+i99Tj§—ifT_7.(21)
pu pu p

From above inequality it follows that there exist num-
bers p>0 and g >1, such that

Vgﬂng—%fo, (22)

where 6 > 0. Thereby the solution E =0, J7 =0 and

0 =0 of the systems (16), (17) are Lyapunov stable.
Integrating inequality (22), it can be seen that

Oel”, fel>’NnL” and Ec > NL". (23)

Since

E=Ty+b07 —ubk")E +b(ET —ETY0 e L™  (24)

then the function E (¢) uniformly continuous and, con-

sequently, according to Barbalat theorem (Popov,
1970)

im&@¢) =0, lim f(£)=0. (25)

Then from (23)-(25), we find that lim&76 =0 and

t—
since by force of the lemma 3 the vector-function &(#)
is strongly integral nondegenerate, we have
lim(6 — é) =0 (Fomin, 1981; Fradkov, 1999).1
t—>©

Substituting the found values 0 to the equation (4) we
discover the unknown quantitative parameters w; .

5. CONCLUSION AND SIMULATION RESULTS

To illustrate the possibilities of the algorithm presented
above we consider the problem of estimation of the
function

f=Cy+Asinwt, (26)

and its parameters Cy = A=w =1.

For given functions the models (13), (14) take the
forms

£ =&, @7

£ =&, 28)
E=80,+&0,+ &0+ u(f - ), (29)
F=k& +hyEy + k&, (30)

where él,éz,é3 are the estimations of parameters
6,=0,0, =-0*, 0,=0 and supplied by the algo-
rithm (15)

0, =kl (f 7). i=13. G1)

Choose the coefficients k; =154, k, =66, ky;=12

(for =1 and p=10* see equation (12)) to guarantee

the nonsingularity of the matrix 7, the number
#=11, and the coefficients of the adaptation

k,y =k, =k,; =50. Results of the simulation are
illustrated on time-diagrams of the estimations
él,éz,é3 (fig. 1) and the error jN” (fig. 2). The results

demonstrate convergence of f to zero and the esti-

mates 0,,0,,0; of parameters 0,,0,,0;.
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Fig. 1. Processes in a system identification: estimations
of parameters.
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Fig. 2. Processes in system identification: signal of the
error f .
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