
∞H FILTERING OF SIGNALS  SUBJECTED TO MULTIPLICATIVE WHITE NOISE

Adrian  Stoica

University “ Politehnica” of Bucharest, Faculty of Aerospace Engineering,
Str. Splaiul Independentei, no. 313, Ro-77206, Bucharest, Romania

e-mail : amstoica@fx.ro

Abstract: In the present paper an ∞H -type filtering approach for continuous-time stochastic
systems with multipli cative white noise is presented. The design procedure uses the Bounded
Real Lemma type result. The paper considers the case when the filter oder is fixed. Necessary and
suff icient solvability conditions are derived in terms of two linear matrix inequalities coupled by a
rank constrain condition. A numerical example illustrates the theoretical developments.
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1. INTRODUCTION

One of the direct applications of the ∞H control
theory is the filtering of signals generated by systems
corrupted with stochastic noise. These filtering
techniques are mainly based on the γ -attenuation

type results derived for different classes of stochastic
systems. Much attention has received in the last years
the study of stochastic systems with multipli cative
noise (e.g. (El Ghaoui, 1991), (Boyd et al., 1994),
(Dragan et al., 1997) ) due to their wide of
applications ((Costa and Kubrusly, 1996),
(Ugrinovskii , 1998)). The γ -attenuation problem for

continuous-time case has been studied in (Hinrichsen
and Pritchard, 1998) where necessary and suff icient
conditions for solving the problem are expressed in
terms of two coupled nonlinear matrix inequalities.
The discrete-time conterpart has been investigated in
(Dragan and Stoica, 1998). Robust stabil ization
problems for stochastic systems with multipli cative
white noise can be found in (Dragan et al., 1997),
(Ugrinovskii , 1998), (Gershon et al., 1999), (El

Ghaoui, 1991). In the present paper an ∞H   type
filtering approach for continuous-time stochastic
systems with multipli cative white noise is presented.
The design procedure uses the Bounded Real Lemma
type result derived in (Morozan, 1995) and differs

from the developments derived in (Gershon et al.,
2001), where a similar problem is considered.  Unlike
(Gershon et al., 2001) where the order of the obtained
filter equals the order of the plant, the present paper
deals with the more general situation when the filter
has an apriori imposed order. This formulation is
particularly useful in applications where the plant
generating the filtered signal has high order. The
paper is organized as follows. In Section 2 some
introductive preliminaries and notations are
introduced related to the class of stochastic systems
under  investigation and the problem formulation.
The main result is derived in Section 3 where
necessary and suff icient conditions for solving the
filtering problem are derived. A numerical example
ill ustrating the theoretical developments is presented
in Section 4.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Notations and definitions

Throughout the paper { }��
,,Ω denotes a given

probabilit y space. Consider the stochastic system
subjected to multiplicative white noise:
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where nx R∈ denotes the state vector, mu R∈ is the

control variable, py R∈ is the output and ( ),...,1 tw

( ) R∈ttwr , are independent standard Wiener

processes. With  �� ⊂t will be denoted the smallest

σ -algebra with respect to which all random
functions ( ) ( ),12 twtw jj −  ,21 ttt ≤≤  rj ≤≤1 are

measurable and they also contain all sets �∈S with

( ) .0=S
�

By ( )mL RR ,2 Ω×  it is denoted the space

of measurable functions mu RR →Ω×: with

( )∫ ∞<=
R

dttuEu
22

,

where E is the expectation and ∑
=

=
m

i
iuu

1

22
. The

space of all ( )mLu RR ,2 Ω×∈  with the property that

( )tu is measurable with respect to t

�
 for every

R∈t is denoted by ( )mL RR ,
~2 Ω× . The space

( )mL RR ,
~2 Ω×  is closed in 2L  and hence it is a

Hilbert space.

Definition 1 The system (1) is exponentially stable in
mean square (ESMS) if there exist 0>α  and 1≥β

such that ( ) ( )0
2

0, ttettE −−≤Φ αβ  for all 0tt ≥ ,

where ( )0, ttΦ  is the fundamental (random) matrix

solution  associated with the system:
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2.2 Input-output operators

In  (Morozan, 1995) it is proved that if (1) is ESMS
then one can define the following input-output
operator:

( ) ( )pm LLT RRRR ,
~

,
~

: 22 Ω×→Ω×
by

( )( ) ( ) ( ) ( )tDutCxtytTu uu +==

where

( ) ( ) ( ) τττ dButtx
t

u ∫
∞−

Φ= ,

is a solution of the first equation of system (1). One
can prove that T is a linear bounded operator.

The following result is an LMI version of the
Bounded Real Lemma type result derived in
(Morozan, 1995).

Proposition 1 Assume that the stochastic system (1)
is ESMS; then γ<T if and only if it exists a

symmetric matrix 0>X such that:
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2.3 Problem formulation

Consider the stable system  with the output 1y
multipli catively perturbed with white noise:
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where
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npnpmnnn CCBA ×××× ∈∈∈∈ RRRR

( )tw,R∈σ is a scalar standard Wiener process and

2y is a quality output. Given 0>γ  and N∈fn , the

problem consists in determining the fn -order

deterministic filter:
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such that the input-output operator

( ) ( )2,
~

,
~

: 22 pm LLT RRRR Ω×→Ω×
from zu → , where ( ) ( ) ( )tytytz f−= 2 has the norm

less than γ .

3. MAIN RESULT

The following result provides necessary and
sufficient conditions under which the filtering
problem formulated in Section 2.3 has a solution.

Theorem 1 The filtering problem has a solution if
and only if there exist the symmetric matrices

0
~

,0,0 >>> RRP  of dimension ( ) ( ),, nnnn ××
( )ff nn × , respectively and a ( )fnn× matrix M
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Proof.  When coupling the filter (4) to the system (3)
one obtains the resulting system:

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )txCtxCtz

tdwtxCBdttxCtxAtdx

dttButAxtdx

ff

ffff

−=

++=
+=

2

11 σ

or equivalently

[ ] 







−=

















+









+
















=









f
f

ff

ffff

x

x
CCz

dw
x

x

CB

udt
B

dt
x

x

ACB

A

x

x
d

2

1

1

0

00

0

0

σ
              (9)

 Introduce the following notations:
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According with Proposition 1 the γ -attenuation

condition for the input-output operator associated
with the resulting system (9) is satisfied if and only
there exists 0>X such that:
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Consider the following partition of X :
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using expressions (10), the inequality (11) becomes:
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Assume that fB is full rank column. This is not a

restrictive assumption since in the case when the
solution of the filtering problem is with fB non-full

column, from the structure of (12) with (13) it follows
that there exists a small enough perturbation of

fB such that the perturbed matrix is full rank and  it

verifies (12). Morover for fB full rank column

always exists a nonsingular transformation T such

that 
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TB f . Therefore without loosing the

generality one can choose 
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B f . A similar

reasoning  can be made is when fB is full rank row.

The condition (12) can be expressed as:
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Based on the Projection Lemma (Boyd et al., 1994),
it follows that (14) has a solution Ω if and only if

0ˆˆ <
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where 
P

W ˆ  and 
Q

W ˆ denote bases of the null spaces of

P̂ and Q̂  respectively.

Further, perform the following partition of 1−X
according with the partition of X :
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Direct algebraic computations based on the fact that
11 −− =− SMNRS T  show that (16) is equivalent with

(5), where 1−= SP  and (17) is equivalent with (6).
The rank condition (8) follows from the relationship
between X  and 1−X  and shows that

TMRMRS 11 ~−− −= . €

If the necessary and suff icient conditions of Theorem
1 are accomplished then a solution of the filtering
problem can be easil y obtained by solving the basic
LMI (14) with respect to Ω .

Remark 1 The rank condition (8) leads to a
nonconvex optimization problem that is much harder
to be solbed than a convex one. Such situation also
appear in control problems with controller rank
constraints. Due to the importance of  optimization
problem with rank constraints, the recent literature
offers certain effective procedures to solve such
problems (e.g. Grigoriadis and Skelton, 1996, Gubin
et. al., 1967).

4. A NUMERICAL EXAMPLE

In the present section a numerical example illustrates
the previous theoretical developments. The
Instrumental Landing System (ILS) is a
radioelectronic equipment which provides at the bord

of the aircrafts on-line informations concerning the
aircraft position relative to some glideslope
references in the landing phase of the flight. The
glideslope signal ( [ ]Aµ ) can be expressed as:

0Kii gs =                                (18)

where the multiplicative factor K depends on the
glideslope sensitivity and 0i denotes the nominal
signal. International standards limit maximum
deviation from the niminal glideslope sensitivity at

%10%,20%,25 ±±± , respectively, function of the

performance category I, II or III of ILS system
(Rauw, 1998).

If σ denotes the mean square deviation of K then

( )( ) 997.030 ≥<− σKtKP , where 0K denotes the

nominal value of the multipli cative factor. This
probabilit y increases when 0→σ . Then, taking

06.0=σ for which 18.03 =σ one can accomplish the
standards requirements for Cat. II of ILS. Thus the
multipli cation factor K in (18) can be replaced by:

σξ+= 0KK                           (19)

where ξ  is a white noise with unitary covariance.  If

the altitude dynamics is given by BuAxx +=
�

 with
Cxi =0 , then according with (18) and (19) the glide-

slope measured signal is ( )CxKi gs σξ+= 0 . Hence

one obtains a stochastic system of form (3) for which
a deterministic filter is designed. For
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In Figure 1 the unfiltered and the filtered signals are

Figure 1. Filtered (black) and unfiltered signal



represented, respectively.

Then a Kalman filter for the attitude dynamics has
been designed by tuning the covariance matrices

0Q and 0R of the control and output additive white

noise perturbations. For 1000 =Q and 1.00 =R the
resulting Kalman filter provides the results shown in
Figure 2 where the filtered and the unfiltered signals
are represented.

Figure 2. Filtered signal by Kalman filter (black) and
unfiltered signal

Analysing the numerical results ill ustrated in Figures
1 and  2 one concludes that a filter designed using the
specific multipli cative character of the stochastic
perturbations provides improved results than the ones
given by Kalman filters which are appropriate in the
case of additive stochastic perturbations.

5. CONCLUSIONS

The present paper describes an ∞H type filtering
approach for stochastic systems subjected to
multipli cative white noise. The order of the
deterministic filter is fixed. Necessary and suff icient
conditions of solvabilit y are derived in terms of two
linear inequalities coupled by a rank constraint
condition. A numerical example illustrates the
theoretical developments.
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