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Abstract: In the present paper an H © -type filtering approach for continuous-time stochastic
systems with multipli cative white noise is presented. The design procedure uses the Bounded
Red Lemmatype result. The paper considersthe @ase when the filter oder is fixed. Necessary and
sufficient solvability conditi ons are derived in terms of two linear matrix inequalities coupled by a
rank constrain condition. A numerical exampleillustrates the theoretical developments.
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1. INTRODUCTION

One of the dired applicaions of the H® control
theory is the filtering of signals generated by systems
corrupted with gochastic noise. These filtering
techniques are mainly based on the y -attenuation

type results derived for different classes of stochastic
systems. Much attention hasreceaved in the last years
the study of stochastic systems with multiplicaive
noise (e.g. (El Ghaoui, 1991), (Boyd et al., 199),
(Dragan et al., 1997) ) due to their wide of
applications ((Costa and Kubrudy, 19%),
(Ugrinovskii, 1998)). The y -attenuation problem for

continuous-time @se has been studied in (Hinrichsen
and Pritchard, 1998) where necessary and sufficient
conditions for solving the problem are epressd in
terms of two coupled nonlinea matrix inequalities.
The discrete-time @nterpart has been investigated in
(Dragan and Stoica, 1998. Robust stabilization
problems for stochastic systems with multiplicaive
white noise can be found in (Dragan et al., 1997),
(Ugrinovskii, 1998, (Gershon et al.,, 1999, (EI

Ghaoui, 199]). In the present paper an H® type
filtering approach for continuoustime stochastic
systems with multipli cative white noise is presented.
The design procedure uses the Bounded Real Lemma
type result derived in (Morozan, 1995 and dffers

from the developments derived in (Gershon et al.,
2001, where asimilar problem is considered. Unlike
(Gershon et al., 2001 where the order of the obtained
filter equals the order of the plant, the present paper
deals with the more generd situation when the filter
has an apriori imposed order. This formulation is
particularly useful in applicaions where the plant
generating the filtered signal has high order. The
paper is organized as follows. In Sedion 2 some
introductive  prdiminaries and notations are
introduced related to the class of stochastic systems
under investigation and the problem formulation.
The main result is derived in Sedion 3 where
necessary and sufficient conditions for solving the
filtering probem are derived. A numerical example
ill ugtrating the theoretical developments is presented
in Sedion 4.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Notations and dfinitions

Throughout the paper {Q,¥,P}denctes a given

probability space Consider the stochastic system
subjeded to multiplicative white noise:



(mﬁmmme“Z““mW)m

y(t) = Cx(t)+ Du(t)

where xR " denotes the state vedtor, uDR™is the
control variable, yOJRis the output and w, t)....,
w, (t), tOR are independent standard  Wiener
proceses. With F, O F will be denoted the smallest
o -algebra with resped to which al random
functions w; (t,)-w; () t <t, <t, 1<j<rare
measurable and they also contain al sets SOF with
P(S)=0.By L2(RxQ,R™) it is denoted the space
of measurable functions u: RxQ — R™with

||u||2 =1!'E|u(t)2dt <o,

m
where E is the expedation and |u|” = Zuiz . The

&
spaceof all ullL? (R xQ,R m) with the property that
u(t)is measurable with respet to F, for every
tORis denoted by EZ(RXQ,R"‘). The space
EZ(R XQ,R"‘) is closed in L? and hence it is a
Hil bert space

Definition 1 The system (1) is exporentially stable in
mean square (ESMY) if there exist a >0 and =1

such that E|o(t,t, )" < Bet) for all txty,
where ®(t,t,) is the fundamental (randar) matrix
solution associated with the system:

r
dx(t) = Agx(t)dt + Z A x(t)dw; (¢).
=
2.2 Inpu-output operators
In (Morozan, 1995 it is proved that if (1) is ESMS

then one can define the following inpu-output
operator:

T:2[RxQ,R™) - 2[RxQ,RP)
by
()= v () =Cx, )+ Dul)
where
()= [ol. ek

is a solution of the first equation of system (1). One
can prove that T isalinea bounded operator.

The following result is an LMI version of the
Bounded Real Lemma type result derived in
(Morozan, 1995).

Proposition 1 Asaume that the stochastic system (1)

is ESMS then |[T|<yif and ody if it exists a

symnetric matrix X >0 such that:

0 T d T T T 0

W X+XA)+ZAj XA; +C'C XB+C DB<0-

B

D'D-y21

@)

O
H BTX+D'C

2.3 Problem formulation

Consider the stable system with the output vy,
multipli catively perturbed with white noise:

dx(t) = (Ax(t)+ Bu(t))dt
dy; (t) = Cyx{t )it + o)) ©)
Y (t)=Cox(t)
where
AOR™" BOR™™, c,ORM™ C,ORP™,
o OR,w(t)isascalar sandard Wiener processand
y, isaquality output. Given y >0 and ny ON, the
problem consistsin determining the n; -order
determinigic filter:

Xt =A¢X; +Bry

4
Yi =C¢ X¢

such that the input-output operator

T:2[RxQ,R™) - 2[RxQ,R™)
from u - z, where z(t)=y,(t)- y; (t) has the norm
lessthan y .

3. MAIN RESULT

The following result provides necessry and
sufficient conditions under which the filtering
probem formulated in Sedion 2.3 has a solution.

Theorem 1 The filtering problem has a solution if
and ory if there edist the symmetric matrices

P>0,R>0,R>0 of dimension (nxn),(nxn),
(nf XN ) respectively and a(nxnf )matrix M such
that:

EATP+ PA+c2C,'UTRUC, PB O

<0 5
B B'P —y2|5 ©



EATR+RA+MU01+C1 u'™mr’ B
2
B +02C,’'UTRUC, +C,'C, RB %0 ©)
O
B

O
H B'R -y2

rank%D _T ~[= N¢ 8
oM° -RO

where U =§)Eif ng =2p oruy =[I 0] if ng <py.
C

Prodf. When coupling the filter (4) to the system (3)
one ohbtains the resulting system:

dx(t) (Ax()+ Bu() t
dx; (t)= (Afxf( t)+Cox(t )d“'OB Cx(t)owdt)
7{t)=C,ox{t)-Cr x¢ (1)

or equivalently
dD(DDA 0 Ix %HEBDdt
D:
&g %fcl Ak [OF

ODD(D

%’B C O%‘fm ©
z= [C2 —Cf]% 0

Introducethe foll owing notations:

O A OD g OD

P = B:C AfD %’B
%)EC [c2 ]

(10

According with Proposition 1 the y -attenuation

condition for the inpu-output operator asociated
with the resulting system (9) is satisfied if and only
there xigts X >0 such that:

X+ XA+ ATXA +CTC XBb

0<0. (11)
@ By’ X -y?lg
Consider the following pertition of X :
OR MO
_H\AT ~Di
where ROR™",ROR"™™ and M OR™™ . Then

using expressons (10), the inequality (11) becomes:

DLll £‘12 £‘13 £‘14 B
T
_ 12 £‘22 £‘23 £‘24 [|< 0
- T T
D:"lS £‘23 £‘33 £‘34 B
T T
10 Loy L4 L0
12
where
£, = ATR+RA+MB,C,+C,"B; M
+02C,"B;"RB;C, +C,'C,,
£,=ATM+C, ' B;"R+MA; -C,'C;,
L13=RB
L, = A TR+RA, (13
L,;=MTB,
Loy =-Cy T,
Lz =-y°l,
L3y =0,

Asaime that By is full rank column. This is not a

restrictive asaumption since in the case when the
solution of the filtering problem is with B¢ non-full

column, from the structure of (12) with (13) it foll ows
that there &ists a small enough perturbation of
B such that the perturbed matrix is full rank and it

B; full
always exists a nonsinguar transformation T such

verifies (12). Morover for rank column

that TB; =DB. Therefore without loosing the
o0

generality one can choose B; =%% A smilar
O

reasoning can be madeiswhen By isfull rank row.

The ondition (12) can be expressd as:

Z+P'QQ+Q'Q"P<0 (14)
where
0o g ATM+C,"B;'TR RB 0
0 11 1 f
ZzDMTA+RBfC1 0 MTB 0
0 B'R B™M —y2 0
B 0 0 0
(15)
- T B O .
P=EM RO 0[;] =o1oo0;aQ=
gFC, 0 0 -If %

O

g
g
g
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Based on the Projedion Lemma (Boyd et al., 1994,
it follows that (14) hasa solution Q if and only if

T
W5 ZW; <0 (16)
T
Wé ZW(5 <0 a7
where W5 and WQ denote bases of the null spaces of
P and (5 respedively.

Further, perform the following partition of X
according with the partition of X :

4 OS NO
Xt= T =0
EN SO

With these notations one ohtains that

5 N 0 -sG'C
W' =[] S e
M 0 -I 0 F
and
0 0 oo
0
WA:%)OOD
© 1 o

© 010
Dired algebraic computations based on the fact that
ST-R=MNTS™ show that (16) is equivalent with
(5), where P=S"! and (17) is equivalent with (6).
The rank condition (8) foll ows from the relationship
between X and X' and shows that
ST=R-MR'MT.€

If the necessary and sufficient conditions of Theorem
1 are acoomplished then a solution of the filtering
probem can be esily obtained by solving the basic
LMI (14) with resped to Q .

Remark 1 The rank condtion (8) leads to a
nonconvex optimization problem that is much harder
to be solbed than aconvex one. Such situation also
appear in control problems with controller rank
constraints. Due to the importance of optimization
problem with rank constraints, the recent literature
offers certain effective procedures to solve such
problems (e.g. Grigoriadis and %elton, 1996 Gubin
et. al., 1967.

4. ANUMERICAL EXAMPLE

In the present sedion a numerical example illustrates
the previous theoreticad developments. The
Ingrumental Landing System (ILS) is a
radioeledronic equipment which provides at the bord

of the aircrafts on-line informations concening the
aircraft postion relative to some glidedope
references in the landing phase of the flight. The
glidedlope signa ([yA]) can be expres=d as:

igs = Kig (18)
where the multiplicative factor K depends on the
glideslope sensitivity and iydenotes the nomina

signal. International sandards limit  maximum
deviation from the nimina glideslope sensitivity at
+25%, +20%, £10%, respedively, function of the
performance caegory I, Il or Il of ILS system
(Rauw, 1998.

If o denotes the mean sgquare deviation of K then
P(K(t)-Ko|<30)=0.997, where K, denotes the
nominal value of the multiplicative factor. This
probability increases when o - 0. Then, taking
o =0.06for which 30 =0.180ne @an accomplish the

standards requirements for Cat. Il of ILS. Thus the
multiplication factor K in (18) can bereplaced by:

K=K, +0& 19

where £ isawhite noise with unitary covariance If
the dtitude dynamics is given by x= Ax+ Bu with
io = Cx, then according with (18) and (19) the glide-
slope measured signdl is iy = (Ko +0&)Cx. Hence
one ohtains a stochagtic system of form (3) for which
adeterminigtic filter is designed. For
1 50
A=—-—, =—,C, =1C, =1,K, =1

T I
applying the result stated in Theorem 1, one obtains
for the levd of attenuation y =5,

R=1.9457M =-0.6692 R=0.3132 P = 05161
and thefilter

X; =-0407X; +y;

y; =0.4450; .
In Figure 1 the unfiltered andthefiltered signasare
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Figure 1. Filtered (black) and unfiltered signal



represented, respedively.

Then a Kalman filter for the attitude dynamics has
been designed by tuning the variance matrices
Qpand Ryof the wmntrol and output additive white

noise perturbations. For Q, =100and R, =0.1the

resulting Kaman filter provides the results siown in
Figure 2 where the filtered and the unfiltered signals
arerepresented.
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Figure 2. Filtered signa by Kalman filter (black) and
unfiltered signal

Analysing the numerical resultsillugtrated in Figures
1 and 2 one mncludes that afilter designed using the
spedfic multiplicdive daracter of the stochagtic
perturbations provides improved results than the ones
given by Kalman filters which are appropriate in the
case of additive stochastic perturbations.

5. CONCLUSIONS

The present paper describes an H * type filtering
approach for stochagstic systems sibjected to
multiplicative white noise. The order of the
determinigtic filter is fixed. Necessary and sufficient
conditions of solvability are derived in terms of two
linea inequalities coupled by a rank constraint
condition. A numericd example illustrates the
theoretical developments.
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