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Abstract:
This paper presents analysis results for control systems subject to oscillatory inputs,
i.e., inputs of large amplitude and high frequency. The key results are a series
expansion characterizing the averaged system and various Lie-algebraic conditions
that guarantee the series can be summed. Some illustrative example systems provide
insight into the results; control design applications are discussed in a companion paper.
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1. INTRODUCTION

The study of oscillations in nonlinear differential
equations is a classic and widespread research
topic. Related research areas include nonlinear
dynamical systems (Hale 1992), nonlinear and
geometric control (Fliess et al. 1995), analysis
of animal locomotion (Golubitsky et al. 1999),
design of robotic locomotion and manipulation
devices (Hirose 1993), analysis of switching circuit
models and power conversion circuits (Sanders et
al. 1991), control of quantum dynamics (Warren
et al. 1993) and chemical reactions (Paramonov
1993), and so forth. Furthermore, averaging anal-
ysis seems well suited to tackle novel applica-
tions in the field of micro-electro mechanical sys-
tems (Baillieul and Weibel 1998) and vibrational
control is being investigated within the context
of active control of fluids and separation con-
trol (Seifert and Pack 1999).
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Here we present averaging analysis for systems
described by a differential equation of the form

ẋ = f(t, x) +
1

ε
g

(
t

ε
, t, x

)

,

where the vector field g is periodic in its first
argument, ε is a small positive parameter, and
both vector fields f and g are analytic in x. We
provide a rigorous and general framework that al-
lows to obtain a coordinate-free expression of the
averaged system and a series expansion represen-
tation for it which is appropriate for control design
tasks such as point stabilization and trajectory
planning in underactuated systems. Due to space
limitations we do not present these applications
here, but refer the reader to a forthcoming publi-
cation (Mart́ınez et al. 2001).

This work has connections with classic averaging
theory (Sanders and Verhulst 1985), as well as
with numerous ongoing research efforts. Our anal-
ysis complements the study of differential equa-
tions subject to periodic high frequency, high am-
plitude forcing terms; see (Kurzweil and Jarnik
1988, Liu and Sussmann 1999). Another set of
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related results deals with the analysis of high fre-
quency vibrations in mechanical systems (Kapitsa
1965, Baillieul 1993, Baillieul 1995, Levi 1999),
and more generally averaging analysis in locomo-
tion, rectification and other physical phenomenon
where non-commuting vector fields play a role;
see (Brockett 1989, Ostrowski and Burdick 1998).

The contribution of this paper is a general av-
eraging analysis in a coordinate-free differential
geometric setting. The first step in the averaging
analysis is the computation of the averaged sys-
tem based on a generalized variation of constants
formula and on the notion of pull-back vector
field. Next, we provide a more explicit represen-
tation of the averaged system as an infinite sum
of Lie brackets of the input vector fields with
the drift and iterated integrals of the open-loop
controls. Finally, we present various examples sys-
tems including bilinear, Hamiltonian, and second
order systems, and collect sufficient conditions
that guarantee the series expansion for the aver-
aged system is summable.

The paper is organized as follows. We intro-
duce some preliminary concepts in Section 2. Sec-
tion 3 presents the main averaging analysis in a
coordinate-free differential geometric setting. Sec-
tion 4 treats various example systems and Sec-
tion 5 presents some conclusions.

2. PRELIMINARIES AND NOTATION

This section contains some basic definitions and
results on iterated integrals of scalar functions and
on differential geometry.

2.1 Iterated integrals and their averages

Let N be the set of natural numbers and R+ =
[0,+∞). Given a bounded function u : R+ → R,
define its iterated integrals {Uk : R+ → R, k ∈ N},

Uk(t) =

∫ t

0

u(tk)

∫ tk

0

u(tk−1) . . .

∫ t2

0

u(t1) dt1 . . . dtk .

Lemma 1. Let u be a bounded function. Its iter-
ated integrals satisfy

Uk(t) =
1

k!

(∫ t

0

u(τ)dτ

)k

, (1)

and are T -periodic functions if and only if u is

T -periodic and zero-mean, i.e.,
∫ T

0
u(τ)dτ = 0.

Proof: The result is easily seen true for k = 1.
For k > 1, we have

d

dt
Uk(t) =

u(t)

(k − 1)!

(∫ t

0

u(τ)dτ

)k−1

= Uk−1(t)u(t),

which implies that the Uk satisfy

Uk(t) =

∫ t

0

Uk−1(τ)u(τ)dτ.

Since this equation is equivalent to the definition
of iterated integral, equation (1) is proven. The
second part of the result is straightforward. 2

Given a T -periodic function V (t), let us denote

V =
1

T

∫ T

0

V (t)dt .

If u is T -periodic and zero-mean, the sequence of
its averages {Uk ∈ R, k ∈ N} is defined as

Uk =
1

T

∫ T

0

Uk(t)dt =
1

k!T

∫ T

0

(∫ t

0

u(τ)dτ

)k

dt.

2.2 Elements of differential geometry

Let x, x0 ∈ Rn, t ∈ R+, and let the parameter
ε vary in the range (0, ε0] with ε0 ¿ 1. Let
f, g : R+ × Rn → Rn be smooth time-varying
vector fields. Define their Lie bracket according
to

[g, f ] =
∂f(t, x)

∂x
g(t, x)−

∂g(t, x)

∂x
f(t, x) . (2)

We will use the notation ad0
g f = f , adg f = [g, f ]

and adkg f = adk−1
g [g, f ]. Given a diffeomorphism

φ and a vector field f , the pull-back of g along φ,
denoted by φ∗f , is the vector field

(φ∗f)(x) =

(
∂φ−1

∂x
◦ f ◦ φ

)

(x).

A useful diffeomorphism is the flow map x(t) =
Φg

0,T (x0) describing the solution at time T to the

initial value problem ẋ = g(t, x), x(0) = x0. Let
T > 0 be small enough so that the flow map Φg

0,T
is a local diffeomorphism in a neighborhood of x0.

Lemma 2. (Variation of constants formula). Con-
sider the initial value problem ẋ = f(t, x)+g(t, x),

x(0) = x0. The final value x(T ) = Φf+g
0,T (x0) can

be written as

x(T ) = Φg
0,T (z(T )),

ż(t) =
((

Φg
0,t

)∗
f
)

(z), z(0) = x0.

Proof: See (Agračhev and Gamkrelidze 1978). 2

3. COORDINATE-FREE AVERAGING
UNDER OSCILLATORY CONTROLS

We study averaging under oscillatory controls,
borrowing standard ideas from (Sanders and



Verhulst 1985), and introducing some differ-
ential geometric aspects from (Agračhev and
Gamkrelidze 1978, Hermes 1991).

Let x : [0, T ]→ Rn be the solution to

dx

dt
= f(t, x) +

1

ε
g

(
t

ε
, t , x

)

, x(0) = x0 . (3)

Enlarge the state space by considering x′ = (t, x),
denote by τ = t/ε the fast time scale, and
rewrite (3) as

dx′

dτ
= εf ′(x′) + g′(τ, x′) , x′0 = (0, x0) , (4)

where the vector fields f ′ and g′ are defined
according to

f ′(x′) = (1, f(t, x)) , g′(τ, x′) = (0, g(τ, t, x)) .

In the extended space, τ is the independent vari-
able and (t, x) are dependent variables. We shall
write the flow of g′ as

Φ
g′(τ,x′)
0,τ (t, x) =

(

t,Φ
g(τ,t,x)
0,τ (x)

)

,

and define the pull-back vector field F ′ as

F ′(τ, x′) =
((

Φ
g′(τ,x′)
0,τ

)∗

f ′
)

(x′) . (5)

Note that F ′ is of the form

F ′(τ, x′) = (1, F (τ, x′)) . (6)

Lemma 3. Assume that the vector fields in {gτ ,
τ ∈ [0, T ]} commute and satisfy g(τ + T, t, x) =

g(τ, t, x), and
∫ T

0
g(τ, t, x)dτ = 0. Then, the flow

Φ
g′(τ,x′)
0,τ and the vector field F ′ are T -periodic.

Proof: The assumptions on the family {gτ , τ ∈
[0, T ]} are automatically verified by {g′τ , τ ∈
[0, T ]}. Let x′(t) be the solution to the initial value
problem

ẋ′(τ) = g′(τ, x′) , x′(0) = x′0 . (7)

Note that x′(τ) = Φ
g′(τ,x′)
0,τ (x′0). Let X ′(τ) =

x′(τ + T ). Then

Ẋ ′(τ) = g′(τ + T,X ′) = g′(τ,X ′) , X ′(0) = x′(T ) .

Consequently, X ′(τ) = x′(τ) iff x′(T ) = x′(0).
To prove the latter statement we introduce the
Volterra series (Agračhev and Gamkrelidze 1978,
Isidori 1995). The flow of (7) is formally repre-
sented by the expansion

x′(τ) ≡ Id(x′0)+
+∞∑

k=1

∫ τ

0

ds1 . . .

∫ sk−1

0

dsk(g
′(sk, x

′
0) ◦ · · · ◦ g

′(s1, x
′
0))

= x′0 +

∫ τ

0

g′(s, x′0)ds+

∫ τ

0

∫ s1

0

(g′(s2, x
′
0) ◦ g

′(s1, x
′
0))ds2ds1 + . . .

(8)

where the vector fields g′ are interpreted as deriva-
tions of C∞(Rn+1). Now, using integration by
parts and the fact that the vector fields commute,
∫ τ

0

∫ s1

0

(g′(s2, x
′
0) ◦ g

′(s1, x
′
0))ds2ds1

=
1

2

(∫ τ

0

g′(s, x′0)ds

)2

.

By induction, one can show that
∫ τ

0

ds1 . . .

∫ sk−1

0

dsk(g
′(sk, x

′
0)◦ · · · ◦g

′(s1, x
′
0))

=
1

k!

(∫ τ

0

g′(s, x′0)ds

)k

. (9)

Since by hypothesis g′(τ, x′) is zero-mean, we
conclude from (8) that x′(T ) = x′(0). 2

Given the result in the lemma, we define the
averaged vector field F ′ as

F ′(x′) =
1

T

∫ T

0

F ′(τ, x′)dτ .

It is straightforward to see that F ′(x′) =
(
1, F (x′)

)
.

Finally, let y, z : [0, T ] → Rn be solutions to the
initial value problems

dz

dt
= F

(
t

ε
, t, z

)

, z(0) = x0, (10)

dy

dt
= F (t, y), y(0) = x0. (11)

Theorem 4. (Coordinate-free averaging). Assume
that the vector fields in {gτ , τ ∈ [0, T ]} commute
and that they are T -periodic and zero mean in
their first argument. For t ∈ R+, we have

x(t) = Φ
g(τ,t,x)
0,t/ε (z(t)) ,

and, as ε→ 0 on the time scale 1, we have

z(t)− y(t) = O(ε) .

Additionally, assume both f and g do not depend
explicitly on the slow time scale t, i.e. f = f(x)
and g = g(t/ε, x). If the origin is a hyperbolically
stable critical point for F = F (x), then z(t) −
y(t) = O(ε) as ε → 0 for all t ∈ R+ and
the differential equation (10) possesses a unique
periodic orbit which is hyperbolically stable and
belongs to an O(ε) neighborhood of the origin.

Proof: Applying the variation of constants for-
mula to (4), we get

dx′

dτ
= g′(τ, x′) , x′(0) = z′(τ) , (12)

dz′

dτ
= εF ′(τ, z′) , z′(0) = x′0 .

Averaging this last system in z′, we obtain

dy′

dτ
= εF ′(y′) , y′(0) = x′0 .



By the theorem of first order averaging (Sanders
and Verhulst 1985), we know that z′(τ)− y′(τ) =
O(ε) over the time scale τ = 1/ε. Now, if we write
y′ = (v, y), we get from the previous equation that
v = t and, changing the time scale back to t = ετ ,

dy

dt
= F (t, y) , y(0) = x0 ,

which is the definition of equation (11). Putting
z′ = (u, z), we also deduce that u = t and z(t) −
y(t) = O(ε) over the time scale 1. In addition, we
recover equation (10)

dz

dt
= F

(
t

ε
, t, z

)

, z(0) = x0 .

Finally, we get from (12) that

x(t) = Φ
g(τ,t,x)
0,t/ε (z(t)) .

In case f = f(x) and g = g(t/ε, x), if the origin is
a hyperbolically stable critical point for F , then
the second result follows from the theorem of first
order averaging (Sanders and Verhulst 1985). 2

Next, we refine the approximation result as fol-
lows. Let bsc be the greatest integer less than or
equal to s ∈ R, and let (t/ε modT ) denote the
time instant t/ε− bt/(εT )cT .

Proposition 5. Under the hypothesis of Theo-

rem 4, if T = O(1), then x(t) = Φ
g(τ,t,x)
0,(t/ε modT )(y(t))

+O(ε), on the time scale 1.

Proof: The proof exploits Lemma 3 and the

Volterra series expansion for the flow Φ
g(s,t,x)
0,t/ε

(see (Mart́ınez et al. 2001)). 2

3.1 Series expansions for the averaged system

In this section, we develop a series expansions for
the averaged system in the single input case. For
the multiple input case as well as the convergence
properties of the series, we refer to (Mart́ınez et
al. 2001).

Assume that the input vector field in equation (3)
is of the form g (t/ε, t, x) = u(t/ε, t)g(x), where
u is a bounded function. In other words, equa-
tion (3) reads

dx

dt
= f(t, x) +

1

ε
u

(
t

ε
, t

)

g(x), x(0) = x0.

(13)
Accordingly, we shall consider the iterated inte-
grals Uk(τ, t) and their averages Uk(t) with re-
spect to the first variable of the input u(τ, t).

Theorem 6. (Single input system). Let (τ, t) 7→
u(τ, t) be a bounded function, T -periodic and
zero-mean in τ , continuously differentiable in t.

The vector field F defined in equation (6) satisfies
the formal expansion

F (τ, t, x) = f(t, x)

+

+∞∑

k=1

Uk(τ, t) ad
k
g f(t, x)−

∂U1

∂t
(τ, t)g(x) (14)

and its average F satisfies

F (t, x) = f(t, x)

+

+∞∑

k=1

Uk(t) ad
k
g f(t, x)−

dU1

dt
(t)g(x) . (15)

Proof: We compute F ′ as in equation (5), where
we let f ′ = f ′(x′) be τ -invariant and g′ = g′(τ, x′)
be τ -varying. The following statement is proved
in (Abraham et al. 1988, Theorem 4.2.31)

d

dτ

((

Φg′

0,τ

)∗

f ′
)

(τ, x′) =
(

Φg′

0,τ

)∗

[g′(τ, x′), f ′(x′)].

At fixed x′ ∈ Rn+1, we integrate the previous
equation from time 0 to τ to obtain
((

Φg′

0,τ

)∗

f ′
)

(τ, x′) =

f ′(x′) +

∫ τ

0

(Φg′

0,s)
∗[g′(s, x′), f ′(x′)]ds. (16)

Iteratively applying the previous equality, we get

((

Φg′

0,τ

)∗

f ′
)

(τ, x′) = f ′(x′)+
+∞∑

k=1

∫ τ

0

. . .

∫ sk−1

0
(
adg′(sk,x′) . . . adg′(s1,x′) f

′(x′)
)
dsk . . . ds1

Now, it can be proven by induction that

adg′(s1,t,x) f
′ =

(

0, u(s1, t) adg(x) f −
∂u

∂t
(s1, t)g(x)

)

,

adg′(sk,x′) . . . adg′(s1,x′) f
′ =

(

0, u(sk, t) . . . u(s1, t) ad
k
g(x) f

)

.

with k ≥ 2. The result now follows. 2

4. EXAMPLE SYSTEMS

Here we investigate classes of differential equa-
tions for which the series expansions in Section 3.1
assume a particular structure. By doing so, we
recover and extend a variety of earlier results on
bilinear, polynomial and second order systems.

Before proceeding, we summarize the averaging
procedure from Theorem 4 and Proposition 5 as
follows,

x(t) = Φ
g(t,x)
0,(t/ε modT )(y(t)) +O(ε) ,

ẏ = F (y), y(0) = x0 .

Accordingly, for each example we shall compute

Φ
g(t,x)
0,(t/ε modT ) and F .



4.1 Homogeneous systems

Let f be a vector field on Rn. We say that f
is homogeneous of degree i if each of its com-
ponents with respect to the usual basis of Rn is
a homogeneous function of degree i. The set of
homogeneous vector fields of degree i is denoted
by Hi. By convention, Hi = {0}, for i ≤ −1. If
f ∈ Hi and g ∈ Hj , then [f, g] ∈ Hi+j−1.

The relevant quantities from Theorems 4 and 6 for
the cases (deg f,deg g) = (0, 0), (0, 1), (1, 0) are

Case (0,0): ẋ = a+
1

ε
u

(
t

ε

)

b , x(0) = x0 ,

Φ
u(t)b
0,(t/ε modT )(x0) = b

∫ (t/ε modT )

0

u(τ)dτ + x0,

F = a .

Case (0,1): ẋ = a+
1

ε
u

(
t

ε

)

Bx , x(0) = x0 ,

Φ
u(t)Bx
0,(t/ε modT )(x0) = e

B
∫ (t/ε modT )

0
u(τ)dτ

x0 ,

F = a+

+∞∑

k=1

Uk(−B)ka .

Case (1,0): ẋ = Ax+
1

ε
u

(
t

ε

)

b , x(0) = x0 ,

Φ
u(t)b
0,(t/ε modT )(x0) = b

∫ (t/ε modT )

0

u(τ)dτ + x0 ,

F = Ax+ U1Ab .

4.2 Bilinear systems

We refer the reader to (Isidori 1995, Section 2.4)
for a treatment on bilinear systems. Consider

ẋ = Ax+
1

ε
u

(
t

ε

)

Bx, x(0) = x0. (17)

Lie brackets between linear vector fields are ex-
pressed in terms of matrix commutators

adBxAx = (adB A)x, where adB A = AB −BA.

One can compute,

Φ
gu(t)
0,(t/ε modT )(x0) = e

B
∫ (t/ε modT )

0
u(τ)dτ

x0 ,

F (x) =

(

A+
+∞∑

k=1

Uk ad
k
B A

)

x.

4.3 Polynomial systems

Consider the system

ẋ = f(x) +
1

ε
u

(
t

ε

)

g, x(0) = x0, (18)

where the components of f are polynomials in x
of degree at most M , and g(x) = g is constant.

The degree of adkg f is M − k, and only the first
M Lie brackets are non-vanishing. Accordingly,

Φ
gu(t)
0,(t/ε modT )(x0) = x0 +

(
∫ (t/ε modT )

0

u(τ)dτ

)

g ,

F (x) = f(x) +
M∑

k=1

Uk
∂kf

∂xk
(g, . . . , g
︸ ︷︷ ︸

k times

)(x) .

Note that F is a finite sum of polynomial vector
fields.

4.4 Second order systems

We next focus on control systems described by
second order differential equations. This setting is
representative of interesting examples. Consider
the second order system on Rn

ẍ =
1

ε
u

(
t

ε

)

g(x) . (19)

To write the equation in the standard (first order)
form (13), define the vector fields on R2n

f(x, ẋ) =

[
ẋ
0

]

, g(x, ẋ)lift =

[
0

g(x)

]

,

and compute the relevant Lie brackets as

adglift f =





g

−
∂g

∂x
ẋ



 , ad2
glift f = −〈g : g〉lift ,

adkglift f = 0 , k > 2 ,

where we define the operation of symmetric prod-
uct between vector fields ga, gb on Rn as

〈ga : gb〉 =
∂ga
∂x

gb +
∂gb
∂x

ga .

The relevant quantities from Theorem 4 and The-
orem 6 are

Φ
g(x,ẋ)liftu(t)
0,t

(
x0

ẋ0

)

=

(
x0

ẋ0

)

+





0
(∫ t

0

u(τ)dτ

)

g(x0)



 ,

F = f + U1 adglift f + U2 ad
2
glift f

=

[
ẋ
0

]

+ U1





g

−
∂g

∂x
ẋ



− U2

[
0

〈g : g〉

]

,

so that, using the variables (y1, y2) for the aver-
aged system, we write

ẏ1 = y2 + U1g(y1)

ẏ2 = −U1
∂g

∂x
(y1)y2 − U2〈g : g〉(y1)

with initial conditions (y1(0), y2(0)) = (x(0), ẋ(0)).
It is instructive to compute the second time
derivative of y1, and rewrite the averaged system
as a second order equation. Some straightforward
simplifications lead to

ÿ1 =

(
1

2
U

2

1 − U2

)

〈g : g〉(y1), (20)



with initial conditions (y1(0), ẏ1(0)) = (x(0), ẋ(0)+
U1g(x(0))). In summary, we have

x(t) = y1(t) +O(ε)

ẋ(t) = ẏ1(t) + g(y1(t))

(
∫ (t/ε modT )

0

u(s)ds− U1

)

+O(ε).

Remark 4.1. Analogues to the result in equa-
tion (20) and their physical meaning have been
long studied; e.g., see (Kapitsa 1965, Baillieul
1993, Levi 1999). In particular, if g is a poten-
tial field, g = ∂V/∂x, then 〈g : g〉 = ∂W/∂x,

where W = (∂V/∂x)
2
is the classical Kapitsa’s

potential (Kapitsa 1965) (also called the averaged
potential). It is easy to see that every isolated
critical point of V is a minimum of W . Using

Hölder inequality, we obtain 1
2U

2

1−U2 < 0 and we
conclude that every isolated equilibrium point of
the original system is a Lyapunov-stable equilib-
rium point for the averaged system (Levi 1999).

5. CONCLUSIONS

We have presented a coordinate-free averaging
analysis for a class of control systems sub-
ject to oscillatory inputs. The companion pa-
per (Mart́ınez et al. 2001) developes design tools
for stabilization and trajectory tracking in cer-
tain classes of nonlinear systems. Future direc-
tions of research include deriving extensions of
these results to the case of higher-order averag-
ing, distributed parameter systems, time-delayed
systems, and systems with resonances.
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