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Abstract: The paper represents the root locus fields approach to the problem of
parametric synthesis of uncertain control systems meeting the given robust quality
requirements. The described method consists in location of the system characteristic
equations family roots within the given domain Q in the complex plane. It can be
attained by inscription of the root locus field level lines into the domain Q. Considered
is the case of linear coefficients correlation. The approach offered is peculiar for making
it possible to consider the domains of arbitrary shape both convex and concave
described analytically by algebraic curves. Copyright © 2002 IFAC
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1. INTRODUCTION

The dynamic system quality characteristics are
defined by the position of its characteristic equation
roots in the complex plane. Therefore the problem of
locating roots in this or that way for attaining
required quality characteristics of the system
functioning, i.e. solving the �-stability task, is one of
the most important stages in the control systems
design process.

The �-stability tasks within the parametric approach
to robustness were preceded by the problems of
asymptotic stability, i.e. location of the system roots
in the left half-plane region being the particular case
of more general �-stability instance. The algebraic
approach to this problem can be represented by the
classical works of Barmish (1984) and Soh (1989)
who formulated conditions for invariance of strict
Hurwitz property for polynomials under coefficient
perturbations. The frequency domain approach to the
problem can be illustrated by the bright works of
Y.Z. Tsypkin and B.T. Polyak with the basic paper
(Tsypkin and Polyak, 1991) where the frequency
robustness conditions are formulated for various
types of uncertainty and the method is developed for
computing the robustness margin in one shot.

Further investigations lead to the �-stability problem.
All the tasks that arise in this connection within the
parametric approach and relate to robust systems
analysis and design may be divided into three main
groups: finding the guaranteed roots location domain
for the given system, defining conditions for

verifying whether roots get into the given region
(verifying �-stability conditions) and locating roots
within the given region (ensuring �-stability).

The first group is represented by the paper of
Sirazetdinov (1988) where the domain � of the
guaranteed polynomial roots location is constructed.
The second group being most large in number
comprises the �-stability conditions. Kharitonov
(1981) formulated conditions of the interval
polynomial roots location inside the domain � based
on verifying 2n polynomials with coefficients taking
the limit values of the given intervals. Soh and Foo
(1990) gave conditions for interval polynomial roots
location within the left sector. Conditions for getting
the roots of an interval plant into the convex region in
the complex plane were formulated by Shaw and
Jayasuriya (1993). The third group of methods for the
�-stability problems solving comprises the paper of
Vicino, 1989 who solved the task similar to that
considered by Barmish, 1984, but for the �-stability
case. A geometric approach is applied that allows to
obtain equations of the hypersurfaces in the
coefficient space bounding the regions containing the
polynomial roots in the given region � of the
complex plane. However the method implies rather
sophisticated algorithms and its realization entails
great number of calculations. The task for locating
roots of the uncertain dynamic system characteristic
equation within the trapeze-shaped domain is solved
by Rimsky and Nesenchuk, 1996 using the root locus
approach.
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This paper belongs to the third group. Its main goal is
providing with an instrument for locating the roots of
the uncertain control system characteristic
polynomial within the given arbitrary domain
(including multi-sheet domains) that may be of either
convex or concave shape and is bounded by the
arbitrary algebraic curve. The method is based on the
root locus fields application. Considered is linear
correlation of the coefficients which may be of both
real and complex types.

2. PROBLEM FORMULATION

Consider a family of dynamic systems characteristic
equations like

                 ����
�

�

�
=++++ −

−
QQ

QQ
DSDSDS            (1)

where a1,…,an are variable coefficients that may be
of either real or complex type and linearly depend on
some uncertain system parameter indicated as k being
the subject for arbitrary variation; p is a complex
variable, p=/+L&. Name the parameter k as the free
parameter.

After transformation of equation (1) write it relative
to k.
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where ��Sφ and ��Sψ  are polynomials of the

complex variable p; k is the system  uncertain
parameter.

From (2) obtain an expression for k as follows:
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where ��� ωδX , ��� ωδυ  are harmonic functions of

two independent real variables / and &.

It is required to obtain the values of the uncertain
(variable) parameter k which ensure location of
equation (1) roots within the given domain Q
bounded by the arbitrary closed algebraic curve
q(δ,ω), containing both convex and concave regions.
Name the domain Q as the quality domain.

3. LOCATION OF THE CHARACTERISTIC
EQUATION ROOTS WITHIN THE

GIVEN ARBITRARY DOMAIN

3.1. Circular image root locus field for dynamic
system.

Let the parameter k (see (2) and (3)) to vary
continuously along a circle located in the complex

plane k that is also named as the free parameter
plane. It means that the image of equation (3) root
locus is represented by a circle. The corresponding
equation of the circular image root locus (CRL)
obtained on the basis of the mapping function (3) is
represented in general as

                            fk(δ,ω,a,b,ρ)=0                          (4)

where a and b are coordinates of the image center by
the axes u and # correspondingly; ! is the radius of
the image circle. Complex potential (Rimsky and
Nesenchuk, 1996) of the scalar root locus field is set
at any point of the extended plane of the variable
parameter by means of setting the root locus image
existence over the whole plane. Therefore supposing
that the root locus (4) image is set in the whole plane
k by defining the infinite variation interval
−∞ �ρ��∞ , write the function of the scalar
stationary circular root locus field in the general form
as follows:

f*=f*(δ,ω)

and the field level lines equation as follows:

                                  f*(δ,ω)=ρ2.                           (5)

The latter equation is similar to (4) at a=const and
b=const.

Due to the conformity of the mapping realized by
function (3), the circular field level lines are formed
by the closed curves located in the complex variable
plane p. These curves are located concentrically
around the points named as field localization centers
(Rimsky and Nesenchuk, 1996) which map the field
image center (the circular image center) onto the
plane p.

Definition 1. The points mapping the center of the
circular image defined in the free parameter plane
onto the plane of the system fundamental frequencies
using the rational function p=g(k), reverse to function
(3), are named as localization centers of the circular
root locus field.

Definition 2. Local level lines of the circular root
locus field are the lines bounding the closed simply-
connected regions mapped by function (3) and not
containing the mapping function branching points as
the inner ones.

Definition 3. Global level lines of the circular root
locus field are the lines bounding the closed simply-
connected regions mapped by function (3) and
containing the mapping function branching points as
the inner ones.

Fig. 1 represents the fragment of the circular root
locus field for the dynamic system of [4;0] class. The
localization centers of the field represented by the



level lines L1(
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K1� K2� K3 and K4.  The level lines bind
correspondingly the multi−sheet domains (W1, W2

and W3 in fig. 1) in the plain p. Every domain is the
mapping of the disc image with a particular radius.

The line L1(
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/ ) is local one and lines L2 and

L3  are of the global type.

Fig. 1. The domain Dp of the dynamic system characteristic equation
roots belonging to the given domain Q.

3.2. Field orientation.

Find the domain Dp of roots values belonging to the
given quality domain Q, as the domain bounded by
the level line Lp of the given system circular field.
The image of this line is a circle located in the
complex plane k and bounding the circular (disc)
domain Dk of the corresponding parameter k values.
Thus the following condition should be satisfied:
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The task is solved by inscription of level lines of the
preliminary oriented circular field into the preset
domain Q. The inscribed line Lp will be the bound of
the required domain Dp.

For the task solving algorithm implementation it is
first necessary to set orientation (location) of the
scalar field CRL relative to the domain Q in such a
manner to ensure the inscription of the field level

lines into Q. Proceeding from the geometric
considerations one can conclude that the desired
circular field location is attained when all localization
centers of the field are located inside the domain Q.
Let the circular image center is located on the real
axis u of the complex plane k. It means that the
corresponding field localization centers are located
either at zeroes of function (3), i.e. at the poles of the
open loop transfer function

                           G(p)=ψ(p)/φ(p)                            (6)

or on the portions of the system Teodorchik-Evans
Root Locus (TERL) branches located in the plane of
system fundamental frequencies.

Therefore it is evident that the enough condition for
desired field localization centers orientation is
location (may be arbitrary) of transfer function (6)

poles QMS
M

��� = within the given domain Q.



For the example in fig. 1 the field localization centers
C1, C2, C3 and C4 are located on the TERL branches
which are depicted in the figure by the dashed lines.

Figure above demonstrates an example of the
dynamic system stationary circular root locus field
orientation in relation to the given domain Q.

In the event that if the poles of (6) are located within
the bounds of Q, the field orientation is not required.

3.3. Field level line inscription.

After setting, if necessary, the poles of (6) and the
field localization centers (image center) it is possible
to start the procedure of the level line inscription into
the given region.

The circular root locus field level line inscribed into
the given domain Q is the line being completely
located within this domain and having the
corresponding circular image of the maximal radius.
This line, that is designated as Lp, bounds the
required domain Dp of the characteristic equation
roots values that is completely located inside the
domain Q bounds and mapping the disk image Dk,
bounding the domain of the required variable
parameter k values.

It is evident that the line Lq bounding the domain Q
and the inscribed line Lp have the common point e
(the touch point) at which they have common
tangent. For calculating this point coordinates δe and
ωe write the equation of a tangent to the curve f*(δ,ω)
in general representation:
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where c and d are current coordinates of a point
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coordinates.

On the basis of equations (5) and (7) compose the
system of equations
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where the expression

λ = c/d = ω/δ

is the tangent of the angle of inclination of a tangent
to the axis δ (equation of a tangent straight line
ω=λδ). The first equation of the system is the
equation of the line Lq, bounding the given region Q,
the second and the third equations describe the

tangents to the bounding lines Lq and Lp

correspondingly.

As a result of system (8) solving the coordinates δe

and ωe=λδ for the lines Lq and Lp tangent point are
determined. Radius ρ  of a circle bounding the
domain Dk of the parameter k values and having the
mapping Dp (the domain of equation (1) roots
location) in the plane p is calculated by formula (5).
The radius ρ  that is found completely defines the
required domain Dp of roots values.

When solving system (8) several values of δe, ωe and
ρ may be found, as several lines may be tangent to
the bound, and also one line may have several
tangent points with a bound. It is descriptively
demonstrated in fig. 1 where the lines L2 and L3 have
the tangent points with a bound (points _2 and _3

correspondingly). In such cases it is evidently
necessary to select the minimal value of ρ that
corresponds to the inscribed domain, i.e. to the
domain completely located within the limits of Q. In
fig. 1 the inscribed line is represented by the line
L2=Lp. It touches the domain Q bound in the touch
point _2.

Consider the numerical example. Suppose the control
system dynamics is described by the characteristic
equation like

             p4+8,1p3+24,3p2+32,1p+15,7+k=0          (9)

where k is the uncertain parameter being the subject
for arbitrary variation.

The bound Q of roots location is described by the
algebraic equation

ω6+3ω4δ2+15ω4δ+20,6ω4+3ω2δ4+30ω2δ3+
+113ω2δ2+158ω2δ++45,3ω2+δ6+15δ5+

             +91,9δ4+303δ3+588δ2+644δ+279.     (10)

Bound (10) is represented in fig. 1 by the line Lq. It is
required to determine the domain of the parameter k
values ensuring location of the roots of (9) within the
quality domain Q, bounded by the curve Lq  (10).

The free component of (9) is selected as the uncertain
parameter for making the example to be more
descriptive. It is evident that the free parameter k may
enter into any coefficient of (9) or into all of them
together.

To solve the formulated task the coefficients of the
polynomials φ(p)= p4+8,1p3+24,3p2+32,1p+15,7
and ψ=1 (according to formulas (2) and (9)) are
entered to the input of the corresponding software
package. The curve Lq and function (6) poles (points
p1, p2, p3, p4 in the figure) for the given system are
displayed. The poles are located within the domain
Q, i.e. new poles location is not required. The image



center for the circular field is selected at the point
with coordinates u=2, υ=0. Corresponding
localization centers are located at points K1� K2� K3 b
K4. As a result of the program execution the value
ρ=3 is calculated. It means that if the parameter k
values are located within the domain bounded by the
circle having the center located at the point with
coordinates u=2, υ=0 and radius ρ=3, all the values
of polynomial (9) are located within the domain Q
bounded by curve (10). The corresponding domain
Dp of roots location bounded by the level line Lq is
shown in figure 1.

4. CONCLUSION

The paper deals with the method for parametric
synthesis of uncertain control systems meeting the
requirements of robust quality. The method is based
on locating roots of the dynamic control system
characteristic equation within the given domain
bounded by the algebraic curve of arbitrary
configuration. Coefficients depend linearly on some
uncertain parameter being the subject for arbitrary
variation. The essence of the proposed analytical
method consists in application of root locus fields
that makes it possible to determine the domain of the
uncertain parameter values (including both types, real
and complex values) which ensure location of all the
roots within the given domain. The method is
peculiar for its simplicity and descriptiveness. Unlike
the existing parametric methods dealing with the
convex regions only, the proposed method considers
the roots domains of arbitrary shape bounded by the
analytically represented algebraic curves. Solutions
are also provided for the cases when the given
dynamic system is unstable.

REFERENCES

Barmish, B.R.(1984). Invariance of strict Hurwitz
property for polynomials with perturbed
coefficients. IEEE Trans. Automat. Control, vol.
29, pp. 935-936.

Kharitonov, V.L. (1981). The task of distribution of
the autonomous system characteristic equation
roots. Automatika i Telemehanika, N 5, pp. 30-37.

Polyak, B.T. and Y.Z. Tsypkin (1991). Frequency
domain criterion for the robust stability of
continuous linear systems. IEEE Trans. Automat.
Control, vol. AC-36, pp. 1464-1469.

Shaw, J. and S. Jayasuriya (1993). Robust stability of
an interval plant with respect to a convex region
in the complex plane. IEEE Trans. Automat.
Control, vol. 38, pp. 284-287.

Sirazetdinov, R.T. (1988). Obtaining the guaranteed
domain for location of poles and zeroes of the
dynamic systems transfer functions. Automatika i
Telemechanika�� � �in Russian).

Soh, Y.C. (1989). Strict Hurwitz property for
polynomials under coefficient perturbations.

IEEE Trans. Automat. Control, vol. 34, pp. 629-
632.

Soh, Y.C. and E.C. Foo (1990). Generalization of
strong Kharitonov theorem to the left sector.
IEEE Trans. Automat. Control, vol. 35, pp. 1378-
1382.

Rimsky, G.V.and A.A. Nesenchuk (1996). Root
locus methods for robust control systems quality
and stability investigations. Proceedings 1996
IFAC 13th Triennial Congress. San Francisco,
USA. June 30-July 5, vol. G, pp. 469-474.

Vicino, A. (1989). Robustness of pole location in
perturbed systems. Automatica, vol. 25. pp. 109-
113.


