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Abstract: The identification algorithm of Wiener-Hammerstein nonlinear model is
proposed in the paper. When the nonlinearity in the Wiener-Hammerstein model
is approximated by polynomial or spline function, the identification algorithms
can be implemented iteratively, and the compensator for the nonlinear distortion
is given by using the estimated Wiener-Hammerstein model and its inverse. A
numerical simulation example of the power amplifier with nonlinearity demonstrates
the effectiveness of the proposed method. Copyright c©2002 IFAC
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1. INTRODUCTION

The majority of real systems have nonlinearity in
practice. Some of them are described by the local
linear models in a restricted operating range, for
example, in many classical control problems the
plants are controlled to keep within an acceptable
range. However, when the operating range is large,
the nominal local model is not enough to describe
the global dynamic behavior, so it may fail to
yield satisfactory performance for the specified
application purpose. For example, the power am-
plifier distorts the signal when working near its
saturation region. As a consequence, the strong
demand for nonlinear model identification arises
in many engineering applications.

With the development of neural networks and
optimization techniques, various nonlinear iden-
tification schemes have been proposed to handle
several classes of nonlinear systems, though the
practical nonlinear processes have unique proper-
ties (Sjöberg and et al., 1995; Haber and Unbe-
hauen, 1990; Ballings, 1980). For example, there
are many classical approaches dealing with the

identification problems of polynomial-based mod-
els such as Hammerstein and Wiener models.
Some researchers have studied the modeling ap-
proach using Volterra series. Neural networks,
support vector machine and some learning algo-
rithms have solved a wide class of nonlinear sys-
tems. Fuzzy logic also offers an important tool to
handle fuzzy nonlinear model identification, etc.

The Hammerstein model and Wiener model are
probably the most widely used nonlinear dy-
namic modeling approaches. Though the model
structural assumptions about Hammerstein and
Wiener models are restrictive, they describe the
actuator, sensor and high power amplifier’s non-
linearity in many engineering applications. Fur-
thermore, it is easy to compensate the nonlinear-
ity by a predistorter that implements the non-
linearity inverse. For these reasons Hammerstein
and Wiener models are popular in control and
signal processing areas. The classical algorithms
estimate the parameters of the nonlinear ele-
ments and the linear dynamics simultaneously
(Bai, 1998), or iteratively in a bootstrap way
(Vörös, 1995), or separately in a blind manner
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(Sun et al., 1999), and some performance quan-
tification results are also given (Ninness and Gib-
son, 2000). The nonlinearity in Hammerstein and
Wiener models are classically approximated by a
polynomial. On the other hand, the spline func-
tion also offers good approximation performance
in many application situations (Zhu, 1999).

In this paper the identification problem for the
Wiener-Hammerstein model is considered. The
algorithms are developed for the polynomial ap-
proximated and spline function approximated
nonlinear element. With the identified Wiener-
Hammerstein model and its inverse model, the
compensator is given to compensate the nonlinear
distortion. Numerical simulation of the compensa-
tion for the distortion of a high power amplifier in
OFDM digital communication systems illustrates
the effectiveness of the proposed algorithms.

2. PROBLEM STATEMENT

Consider the Wiener-Hammerstein model illus-
trated in Fig.1. The model structure consists of
a static nonlinear element G and two linear dy-
namics A, B. It assumes the separation between
the nonlinearity and the dynamics in the Wiener-
Hammerstein models. It is seen that this assump-
tion can reduce the complexity of the identifica-
tion greatly. Denote the input, output signals as x
and y, respectively. x1 and x2 are the unobservable
intermediate signals. The task is the estimation of
the parameters of two linear dynamics A, B and
the nonlinear element G or its inverse H , where
G(H(x)) = x. Then the compensator is given to
compensate the distortion caused by the nonlinear
element G.
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Fig. 1. Illustration of Wiener-Hammerstein model

In many applications, e.g. in communication sys-
tems, the input signal is composed by a set of
frequency waves, so it is convenient to deal the
problem in frequency domain. The assumptions in
the identification and compensation problem are
given as follows.

(A.1) The separation between the linear dynamics
and nonlinear element holds in the nonlinear
system. This is the most important assump-
tion in Hammerstein and Wiener models.

(A.2) The system is stable, and the signals are
bounded.

(A.3) The nonlinear element G is a smooth contin-
uous function, and can be approximated by

x2 = G(x1) = g0 + g1x1 + g2x
2
1 + · · · (1)

or other static approximation such as spline
function, which will be discussed later.

(A.4) The linear dynamics A and B are described
by rational transfer function model

A(s) =
PA(s)
QA(s)

, B(s) =
PB(s)
QB(s)

(2)

where the orders are known as a priori.
When the model operates in the discrete-
time framework, they can also be given by
the corresponding discrete-time models.

(A.5) In order to ensure the unique parameteriza-
tion, some extra constrained conditions are
necessary. Here it assumed that g1 = 1 and
the constant coefficient of PB is 1.

(A.6) It assumed that the inverse models of the
nonlinear element and linear dynamics exist
to give the distortion compensator.

3. IDENTIFICATION ALGORITHM

The identification algorithms are considered for
two situations where the static nonlinearity is
approximated by classical polynomial, and spline
function respectively. Without loss of the general-
ity, it is assumed that the transfer function model
of the linear dynamics is given in the continuous
time form and the input signal consists of a finite
number of periodic frequencie waves.

3.1 Case of Polynomial Approximation

Assume that the nonlinear element G and its
inverse H are approximated by polynomials. Their
polynomial degrees are Lg and Lh respectively.
Denote the estimates in the i-th iteration as
Â(i)(s), B̂(i)(s), Ĝ(i) and Ĥ(i) respectively. For
the sake of simplicity, the affection of observation
noise and other disturbances are not discussed in
this paper. The identification algorithm is imple-
mented iteratively. The initial estimate of A is
given by Â(0) = 1. The (i + 1)-th iteration is
performed as follows.

3.1.1. Estimation of B̂(i+1)(jω) and Ĝ(i+1)(x)

Denote the Fourier transformation F(x(t)) as
X (jω). It can be estimated through DFT at a
discrete set of frequencies. Since the frequency
of the output signal in nonlinear system might
be infinite, the sampling frequency and DFT size
should be large to grasp the main frequency char-
acters. Then

X̂1(jω) = Â(i)(jω)X (jω) (3)

where X1(jω) is the Fourier transformation of
x1(t). Then the frequency characteristics of the
output signal y(t) can be approximated by

Y(jω) = B̂(i+1)(jω)
(
ĝ
(i+1)
0 + ĝ

(i+1)
1 X̂1(jω)



+ĝ
(i+1)
2 X̂ (2)

1 (jω) + · · ·+ ĝ
(i+1)
Lg

X̂ (Lg)
1 (jω)

)
(4)

at the discrete set of frequencies, where X (l)
1 (jω) =

F(xl
1(t)). Furthermore (4) leads to

(
1+jq̂

(i+1)
b,1 ω−q̂

(i+1)
b,2 ω2−jq̂

(i+1)
b,3 ω3+· · ·

)
Y(jω)

=
(
p̂
(i+1)
b,0 +jp̂

(i+1)
b,1 ω−p̂

(i+1)
b,2 ω2−jp̂

(i+1)
b,3 ω3 + · · ·

)
·(

1+ĝ
(i+1)
1 X̂ (1)

1 (jω)+ĝ
(i+1)
2 X̂ (2)

1 (jω)+

· · ·+ ĝ
(i+1)
Lg

X̂ (Lg)
1 (jω)

)
(5)

Then, B̂(i+1)(jω), Ĝ(i+1)(x) can be estimated
from (5). Though the parameters in the right
side of (5) is nonlinear because the parameter
products of P̂B and Ĝ appear, it is possible cal-
culate them through a generalized model where
the identical terms are over-parameterized in a
linear manner followed by the separating opera-
tion from the oversized parameters (Bai, 1998). In
the broadband situation, the frequency weighting
should also be considered for the affect of high
frequencies. Notice that the over-parameterized
products of P̂B and Ĝ can also be arranged in
the multiplication of two polynomials such as

(p̂b,0 + p̂b,1z + · · ·)(1 + ĝ1z + · · ·)
= α1 + α2z + α3z

2 + · · ·
· · · (6)

(p̂b,0 + p̂b,1z + · · ·)(ĝLg + · · ·+ ĝ1z
Lg−1 + zLg)

= β1 + β2z + β3z
2 + · · ·

Then P̂B and Ĝ can also be separated from these
multiplications.

When the linear dynamics can be modeled by an
AR model, (5) reduces to

(
1+jq̂

(i+1)
b,1 ω−q̂

(i+1)
b,2 ω2−jq̂

(i+1)
b,3 ω3+· · ·

)
Y(jω)

= p̂
(i+1)
b,0

(
1 + ĝ

(i+1)
1 X̂ (1)

1 (jω) + ĝ
(i+1)
2 X̂ (2)

1 (jω)

+ · · ·+ ĝ
(i+1)
Lg

X̂ (Lg)
1 (jω)

)
(7)

then the computation reduces to simple linear
parameterization problem.

3.1.2. Estimation of Â(i+1)(jω)

Denote Fourier transformation of x2(t) as X2(jω).
At the given discrete set frequencies correspond-
ing to DFT, X2(jω) is estimated by

X̂2(jω) =
Y(jω)

B̂(i+1)(jω)
(8)

Then Â(i+1)(jω) satisfies

Â(i+1)(jω)X (jω) = ĥ
(i)
0 + ĥ

(i)
1 X (1)

2 (jω)

+ĥ
(i)
2 X (2)

2 (jω) + · · ·+ ĥ
(i)
Lh

X̂ (Lh)
2 (jω) (9)

where X̂ (l)
2 (jω) = F(x̂l

2(t)), and the estimated
signal x2(t) is given by F−1(X̂2(jω)), F−1 denotes
the inverse Fourier transformation. Then the pa-
rameters of Â(i+1)(jω) are estimated from

(
p̂
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(i+1)
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3.1.3. Estimation of Inverse Ĥ(i+1)(x)

The frequency characteristics estimation X1(jω)
and X2(jω) of x1(t) and x2(t) can be updated
using the estimates of Â(i+1)(jω) and B̂(i+1)(jω),
then in the nonlinearity inverse model,

X̂1(jω) = ĥ
(i+1)
0 + ĥ

(i+1)
1 X̂ (1)

2 (jω)
+ĥ

(i+1)
2 X̂ (2)

2 (jω) + · · ·+ ĥ
(i+1)
Lh

X̂ (Lh)
2 (jω)(11)

thus the estimate of Ĥ(i+1)(x), which can be
utilized to compensate the nonlinear distortion
directly, is obtained.

Let i = i + 1 then return to 3.1.1 for the next
iteration.

3.2 Case of Spline Function Approximation

In the polynomial approximation, high polyno-
mial degree is sometimes necessary to ensure high
approximation accuracy, which leads to that the
number of parameters significantly increases so
the estimation will suffer from more computa-
tion complexity. It can be resolved by using the
low order piecewise polynomials, e.g. the spline
functions (Zhu, 1999). As illustrated in Fig.2, let
the nonlinearity inverse H within the range of
[ξi, ξi+1), which is denoted as Hi, be approximated
by a piecewise polynomial

Hi(y) =
m∑

l=0

hi,ly
l (12)

where ξi is the knot, m is the degree of the spline
function. The similar structure can also be utilized
to approximate the nonlinearity G.

The number of knots is I, then the parameter
number of the spline function is (m + 1)(I + 1).
Assume that Hi and its derivation are continuous
in [ξi, ξi+1). Furthermore, at knot ξi, the following
constrained condition
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Fig. 2. Spline function and its knots

∂lHi(y)
∂ly

∣∣∣∣
y=ξi

=
∂lHi−1(y)

∂ly

∣∣∣∣
y=ξi

(13)

is often imposed on the smooth piecewise poly-
nomial Hi, where l = 0, · · · , m − 1. It means
that the values of m-th degree spline function
and its 1, · · · , (m−1)-th derivation are continuous
at every knot ξi. Then there are mI constrained
conditions for (12), and the number of the inde-
pendent parameters of the spline function reduces
to (m + 1)(I + 1) − mI = m + I + 1.

Now consider the estimation of the nonlinearity G
and its inverse H .

3.2.1. Estimation of H0

Following (12), the piecewise polynomial function
satisfies the following relation

x1(t) = H0(x2(t)) =
m∑

l=0

h0,lx
l
2(t),

for x2(t) < ξ1 (14)

then h0,l can be calculated using classical algo-
rithms such as least squares method.

3.2.2. Expressing Hi by Hi−1

Substituting the estimated parameters of Hi−1

into (13) yields that

m∑
l=0

hi−1,l(ξi)l =
m∑

l=0

hi,l(ξi)l

m∑
l=1

lhi−1,l(ξi)l−1 =
m∑

l=1

lhi,l(ξi)l−1

· · · (15)
m∑

l=m−1

l(l − 1) · · · (l − m + 2)hi−1,l(ξi)l−m+1

=
m∑

l=m−1

l(l − 1) · · · (l − m + 2)hi,l(ξi)l−m+1

Then hi,0, · · · , hi,m−1 can be expressed by hi−1,0,
· · ·, hi−1,m and hi,m.

3.2.3. Estimation of Hi

Substituting the expressions of hi,0, · · · , hi,m−1 in
(15) into Hi yields that there only hi,m remains
unknown in the expression of Hi, so it can be
easily estimated from the observation data in
the range of [ξi, ξi+1]. Moreover, hi,0, · · · , hi,m−1

can be calculated from the estimates of hi−1,0,
· · · , hi−1,m and hi,m using (15).

Let i = i + 1. Return 3.2.2 to estimate the
parameters of Hi+1, · · ·, HI.

The polynomial degree m and the spline knots
may be different, however, the estimation proce-
dures of the nonlinearity G are almost the same as
that of H . Furthermore, using the relations given
in 3.2.2, there only m+I +1 unknown parameters
remain in the approximation of x1(t) ∼ x2(t).
Substituting it into (4) or (9), the estimation can
also be implemented in frequency domain easily.

3.3 Compensation of Nonlinear Distortion

The compensator of the nonlinear distortion can
be designed by using the estimated Wiener-
Hammerstein model. For example, in some signal
processing applications, the output signal y(t) is
required to close to the desired signal s(t). Predis-
tortion is the most popular method to compensate
the distortion. It can be implemented as in Fig.3.
First calculate the signals z1(t) and z2(t) using
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Fig. 3. Compensator of the Wiener-Hammerstein
nonlinear model

the estimates of the Wiener-Hammerstein model
as follows.

S(jω) = F(s(t))

Z1(jω) =
1

B̂(i+1)(jω)
S(jω)

z1(t) = F−1{Z1(jω)} (16)

z2(t) = ĥ
(i+1)
0 + ĥ

(i+1)
1 z1(t) + ĥ

(i+1)
2 z2

1(t)
+ · · ·+ ĥ

(i+1)
Lh

ẑLh
1 (t)

then the input signal of the Wiener-Hammerstein
model x(t) is given by

X (jω) =
F(z2(t))

Â(i+1)(jω)
x(t) = F−1(X (jω)) (17)

When Assumption (A.6) holds, the inverse of the
Wiener-Hammerstein model exist and stable, the
bounded signal x(t) is the input signal to the
power amplifier such that y(t) ≈ s(t) holds.



4. NUMERICAL EXAMPLES

In the simulation example the predistortion prob-
lem of a high power amplifier (HPA) is considered
in the Orthogonal Frequency Division Multiplex-
ing (OFDM) communication system. The desired
source signal s(t) in the base band is given by

s(t) =
N−1∑
k=0

ckej2πfkt (18)

where ck = ak + jbk is the 64 QAM informa-
tion symbol, ak, bk ∈ {±1,±3,±5,±7}, fk is the
normalized carrier frequency, the carrier number
N = 1405. The typical spectrum of s(t) is illus-
trated in Fig.4.
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Fig. 4. Normalized spectrum of source signal s(t)

The modulated signal is amplified by the radio fre-
quency high power amplifier, which has saturation
nonlinearity and can be modeled by the Wiener-
Hammerstein model. Since the modulated signal
s(t) is complex signal in the OFDM system, usu-
ally the power amplifier has both the amplitude
(AM/AM) and phase (AM/PM) nonlinearities, as
shown in Fig.5. The true nonlinear model in the
simulation is given by

G(x) = g(x)ej[� x+φ(x)] (19)

where

g(x) =
γ1 |x|

(1 + α1 |x|2p)1/2p
, φ(x) =

π

3
γ2 |x|2

1 + α2 |x|2

and α1, α2, γ1 and γ2 are real numbers. Then
the coefficients of the polynomial approximation
and spline function approximation are handled as
complex numbers.

Assume that the distortion caused by linear dy-
namics A and B are modeled by two low-pass AR
model as follows.

A(jw) =
4.43807294714819

1 + 0.00111846510451jω (20)

B(jw) =
1.16002598448587

1 + 0.00074369688893jω
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Fig. 5. The amplitude and phase nonlinearities

where ω is the normalized frequency. In the sim-
ulation, α1 = α2 = 1.0, γ1 = γ2 = 1.0, and p = 1.
Let the DFT size be 2048. The spectrum of signal
y(t) with distortion is illustrated in Fig.6. Due
to the amplitude, phase nonlinearities and the
low pass linear dynamics, the high order cross-
modulated products, which are the severe inter-
ference to the recovered signal as shown in Fig.7,
occur at the carrier band, as well as the adjacent
channel interference occurs at the outside of the
carrier band. Then the predistortion is necessary
for the high power amplifier (Nojima, 1999; Saleh
and Salz, 1983).
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Fig. 6. The spectrum with distortion
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Fig. 7. The distortion of 64QAM signal obtained
from the amplifier. “*”: True source signal;
“o”: Recovered signal with distortion

Since the source input signal s(t) consists of a
series of harmonics frequency elements, the iden-



tification and predistortion are very easy to be
implemented in frequency domain. The predis-
tortion is performed for two cases where G(x) is
approximated by ordinary polynomial and spline
function. In the polynomial approximation case,
the nonlinearity of G and H are approximated by

G(x(t)) = g0x(t) + g1|x(t)|2x(t) + · · ·
+gLg |x(t)|2Lgx(t) (21)

H(y(t)) = h0y(t) + h1|y(t)|2y(t) + · · ·
+hLh |h(t)|2Lhy(t) (22)

respectively following the nonlinear model in (19),
where the coefficients gl, hl and the signals x(t),
y(t) are complex numbers. In the simulation Lg =
4 and Lh = 5. The predistortion result is given in
Fig.8. With 8 iterations, the distortion decreases
more than 50dB. And the recovered information
symbol from signal y(t) is very close to the true
ones as shown in Fig.9.
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Fig. 8. Predistortion result

In the spline function case, the function degree
both the nonlinearity G and inverse H is chosen
as m = 1, i.e.

Hi(y(t)) = hi,0y(t) + hi,1|y(t)|2y(t)
Gi(x(t)) = gi,0x(t) + gi,1|x(t)|2x(t) (23)

The 4 knots are chosen as ξi = 0.25, 0.49, 0.64, 0.81.
The predistortion result is almost the same as that
in Fig.8 and Fig.9, but the computation is less
than 2/3 of that of the ordinary polynomial case.

5. CONCLUSIONS

The identification and nonlinearity compensation
of a class of nonlinear systems that are modeled
by Wiener-Hammerstein models are investigated
in this paper. By approximating the nonlinear-
ity in traditional polynomial or spline function,
the nonlinearity is estimated iteratively, and the
predistortion of the nonlinearity is also performed
using the inverse model. The numerical simulation
illustrates that the proposed algorithms have good
performance for the nonlinearity predistortion of
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Fig. 9. The recovered information symbol with
predistortion. “o”: True; Dots: Recoverd

the high power amplifier in OFDM communica-
tion systems. The next endeavor is to implement
the identification and predistortion algorithm in
the practical system to achieve high communica-
tion performance.
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