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Abstract: In this work Iterative Learning Control is extended to non-uniform tra-
jectory tracking problems for certain classes of nonlinear uncertain systems. The
proposed ILC scheme can learn from different motion patterns and guarantee the
asymptotic convergence even if the target trajectory varies at every iteration. The
concept of Composite Energy Function (CEF) is adopted to facilitate the convergence
property analysis, which shows that the uniform convergence of the tracking error is
achieved.
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1. INTRODUCTION

Iterative learning control (ILC) is one kind of
control methodology effectively dealing with re-
peated tracking control problems or periodic dis-
turbance rejection problems (Arimoto et al., 1984;
D. H. Hwang and Oh, 1991; Moore, 1993; Kurek
and Zaremba, 1993; Xu, 1997; Wang, 2000; Park
and Bien, 2000).

Most ILC schemes developed hitherto are only
valid where the target trajectory is uniform in
all iterations. If any change occurs in target tra-
jectory due to the variation of control objectives
or task specifications, no matter how small it
might be, the control system has to start learning
process from the very beginning and the previ-
ously learned control input profiles can no longer
be used. Tracking control tasks can be classified
into uniform and non-uniform ones, from practical
point of view we often face non-uniform trajectory
tracking tasks in which the target trajectory may
vary from iteration to iteration. Obviously non-
uniform learning control is much more challeng-
ing.

Can a control system learn from non-uniform
tasks? Intuitively, the control information of a
particular task should contain the system infor-
mation such as input-output relationship or input-
to-state relationships, etc. It is possible for a con-
trol system to learn from the execution of dis-
tinct trajectories and improve the tracking per-
formance gradually. Direct Learning Control (Xu
and Zhu, 1999) and Recursive Direct Learning
Control schemes (Xu et al., 2001) have been devel-
oped recently to make use of previously obtained
control information to generate control input for a
new trajectory. A difficulty encountered in further
expansion is the requirement for perfect preceding
control information and the open-loop control na-
ture. Note that an ILC can always start learning
from scratch, but limited to a simple task with a
uniform trajectory. Can we merge the two kinds
of learning control methods such that the control
system can learn from scratch with distinct tasks?

In this paper we present an ILC scheme that can
partially fulfill the challenging objective. As far as
the matching condition is satisfied and system un-
knowns to be learned are confined to time varying
parametric types and trajectory irrelevant, a Lya-
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punov function can be constructed together with
a learning mechanism. The Lyapunov function
ensures the asymptotic convergence of the system
nominal part in iteration domain. The learning
mechanism estimates the parametric uncertainties
in a pointwise manner over iterations. To analyze
the convergence of the proposed ILC, the concept
of Composite Energy Function (CEF) is further
applied. The CEF is composed of a standard
Lyapunov function and a L2 norm of parametric
learning errors. Through rigorous proof it is shown
that the proposed ILC scheme guarantees the
uniform convergence of tracking error for distinct
trajectories. Therefore, ILC approaches handling
same kinds of systems with identical target tra-
jectory can be viewed as the specific cases of the
proposed one.

The paper is organized as follow. Section 2 for-
mulates the nonlinear dynamic system and the
non-uniform tracking tasks. Section 3 presents the
configuration of the ILC scheme with convergence
analysis based on CEF. Section 4 applies the de-
veloped learning control approach to a nonlinear
system and gives the simulation results.

2. PROBLEM FORMULATION

Consider a higher order MIMO nonlinear dynam-
ical system described by

ẋj = xj+1, j = 1, · · ·,m − 1
ẋm = f(x, t) +B(x, t)[u(t) + d1(x, t)] (1)

where xj ∈ Rn, j = 1, · · ·,m; x
�
= [xT

1 ,xT
2 , · ·

·,xT
m]

T ⊆ Rnm is the physically measurable state
vector of the system; u ∈ Rn is the control input
vector of the system; B(x, t) : Rnm×R+ → Rn×n

is a known function with full rank; f(x, t) : Rn ×
R+ → Rn is a known mapping; d1(x, t) ∈ Rn

is system uncertainties. This dynamic system is
repeatable over a finite time interval [0, T ].

Since the desired state trajectories are different
from iteration to iteration, for the i-th iteration,
the desired trajectory for x1,i is denoted as x1d,i

which is defined on the [0, T ]. x1d,i is differential
with respect to t up to the mth order and all its
higher-order derivatives

x(j)
1d,i

�
= x(j+1)d,i, j = 0, · · ·,m

are available over t ∈ [0, T ].
For the mth order dynamic system (1), an ex-
tended tracking error is defined at the ith iteration
as

σi(t) =
m∑

j=1

cjej,i(t), cm = 1

where ej,i(t)
�
= xj,i(t) − xjd,i(t) and cj (j = 1, · ·

·,m) are coefficients of a Hurwitz polynomial.
Taking derivative of σi(t) with respect to time t
yields

σ̇i(t) =
m−1∑
j=1

cjxj+1,i −
m∑

j=1

cjẋ(j+1)d,i + fi

+Bi(ui + d1,i) (2)

where fi = f(xi, t), Bi = B(xi, t), ui = ui(t) and
d1,i = d1(xi, t).

In this paper, we assume that the system extended
error dynamics satisfy the following assumptions.

Assumption 1. For each desired trajectory xd,i,
there exist a C1 Lyapunov function Vi : Rn → R+

and functions γ1,i, γ2,i and γ3,i, where γ1,i, γ2,i

belong to class-KR and γ3,i belongs to class-K,
such that for a vector ζi ∈ Rn

0 ≤ γ1,i(||ζi||) ≤ Vi(ζi, t) ≤ γ2,i(||ζi||)
∂V T

i

∂t
+

∂V T
i

∂ζ
gi(ζi, t) ≤ −γ3,i(‖ζi‖). (3)

Note that the zero state of the system extended
error described by

ζ̇i = gi(ζi, t) (4)

is uniformly asymptotically stable.

Assumption 2. The deterministic dynamic sys-
tem (1) will repeat itself under the initial resetting

condition, i.e., ej,i(0)
�
= xj,i(0) − xjd,i(0) = 0,

∀i ∈ N+ = {1, 2, · · ·}.

According to Assumption 1, the extended error
dynamics (2) can be rewritten as

σ̇i(t) = gi(σi, t) +Bi[ui + di − B−1
i gi(σi, t)](5)

where di
�
= d1,i + B−1

i [fi +
m−1∑
j=1

cjxj+1,i −
m∑

j=1

cjẋ(j+1)d,i] are the system uncertainties sat-

isfying following assumption.

Assumption 3. The system uncertainties di can
be represented as

di =Θ(t)ξ(xi,xd,i, t), Θ ∈ Rn×n1 ξ ∈ Rn1(6)

where n1 is an appropriate number of dimension.
Θ(t) is an unknown continuous time varying pa-
rameter matrix and ξ is a known vector function.



Remark 1. Although the second term in di, B−1
i

·[fi +
m−1∑
j=1

cjxj+1,i −
m∑

j=1

cjẋ(j+1)d,i], is known, it

is treated by learning control. In this way the
learning capability can be maximized.

The control objective is to track the non-uniform
trajectories by determining a sequence of control
input ui ∈ Rn, such that

∀t ∈ [0, T ] lim
i→∞

‖e1,i(t)‖s = 0 (7)

where e1,i(t)
�
= x1,i −x1d,i is the tracking error of

x1,i at the i-th learning iteration.

Remark 2. It is assumed in the system that the
input distribution matrix B is invertible. This is
indispensable in non-uniform tracking problem.
It is well known that a system is completely
function-space controllable if and only if rank
B = n (Banks et al., 1975). Since the target
trajectory xd is no longer a specific curve but may
span the whole Rn, n independent manipulating
variables are needed.

3. ILC CONFIGURATION AND
CONVERGENCE ANALYSIS

The proposed learning control law at the ith
learning iteration is

ui = −Θ̂i(t)ξi +B−1
i gi(σi, t). (8)

where ξi = ξ(xi,xd,i, t). Here Θ̂ is to learn Θ and
updated pointwisely over [0, T ] as

Θ̂i(t) = proj(Θ̂i−1(t)) + βαi(xi, t)ξT
i

αT
i (xi, t)

�
=

∂V T
i

∂σi
Bi (9)

where β is the learning gain. Given any matrix
A ∈ Rn×m, the operator proj(·) is defined as

proj(A) = {proj(aij)}n×m

proj(aij) =
{

aij |aij | ≤G
G · sign(aij) |aij | > G

.

Remark 3. The projection bound should be suf-
ficiently large to ensure the learnability. The
bound can be either determined from the physical
process limitation or simply using a virtual bound
which can be arbitrarily large but finite.

We consider tracking performance from the first
learning iteration i = 1 and Θ̂0(t) = 0 ∀t ∈ [0, T ].
The convergence of the proposed control scheme
is given by the following theorem.

Theorem 1. For system (1), under the Assump-
tions 1-3, the learning control law (8) and the up-
dating law (9), guarantee the uniform convergence
of tracking error over [0, T ], when the learning
repetition approaches to infinity.

Proof:

The proof consists of two parts. Part A derives the
difference of the composite energy function; Part
B proves the uniform convergence of the tracking
error.

Part A: Difference of Composite Energy Function

Define a non-negative energy function at the ith
learning cycle as:

Ei(t) =
1
2β

t∫
0

trace[(Θ̂i −Θ)T (Θ̂i −Θ)]dτ

+Vi(σi, t) (10)

where Vi(σi, t) is a Lyapunov function which
satisfies Assumption 1.

Consider the difference of the energy function Ei

at the ith learning iteration.

∆Ei(t) = Ei(t)− Ei−1(t)

= Vi(σi, t) +
1
2β

t∫
0

{trace[(Θ̂i −Θ)T (Θ̂i −Θ)]

−trace[(Θ̂i−1 −Θ)T (Θ̂i−1 −Θ)]}dτ − Vi−1(σi−1, t).

According to Assumption 1, the initial resetting
condition, control law (8) and updating law (9),
the following can be derived.

Vi(σi, t) =

t∫
0

(
∂V T

i

∂t
+

∂V T
i

∂σi
σ̇i

)
dτ + Vi(σi(0), 0)

=

t∫
0

[
∂V T

i

∂t
+

∂V T
i

∂σi
gi(σi, τ)

]
dτ +

t∫
0

∂V T
i

∂σi
·

B(xi, τ)[−Θ̂i(τ)ξi +Θ(τ)ξi]dτ

≤−
t∫

0

γ3,i(‖σi‖) +
t∫

0

αT
i (xi, τ)[Θ(τ) − Θ̂i(τ)]ξidτ

�
=−

t∫
0

γ3,i(‖σi‖) +
t∫

0

ς(τ)dτ. (11)

Similarly, using initial resetting condition, we can
obtain

V̇i(σi, t) ≤ −γ3,i(‖σi‖) + ς(t) (12)

According to updating law (9)



1
2β

{trace[(Θ̂i −Θ)T (Θ̂i −Θ)]

−trace[(Θ̂i−1 −Θ)T (Θ̂i−1 −Θ)]}
≤ 1
2β

{trace[(Θ̂i −Θ)T (Θ̂i −Θ)]−

trace[(proj(Θ̂i−1)−Θ)T (proj(Θ̂i−1)−Θ)]}
=
1
2β

trace[(Θ̂i − proj(Θ̂i−1))T

·(Θ̂i + proj(Θ̂i−1)− 2Θ)]
=
1
2
αT

i [Θ̂i + proj(Θ̂i−1)− 2Θ]ξi

=
1
2
αT

i [2Θ̂i − βαiξ
T
i − 2Θ]ξi

=−ς(t)− β

2
‖αi(xi, t)‖2‖ξi‖2 (13)

According to (11), (13) and the positiveness of
β
2 ‖αi(xi, t)‖2‖ξi‖2, we can obtain

∆Ei(t)

= Vi(σi, t) +
1
2β

t∫
0

{trace[(Θ̂i −Θ)T (Θ̂i −Θ)]

−trace[(Θ̂i−1 −Θ)T (Θ̂i−1 −Θ)]}dτ − Vi−1(σi, t)

=−
t∫

0

γ3,i(‖σi‖)dτ −
t∫

0

β

2
‖αi(xi, τ)‖2‖ξi‖2dτ

−Vi−1(σi−1, t)

≤ 0. (14)

From (14), it can be derived that the finiteness
of Ei(t) is ensured for any learning iteration
provided that E1(t) is finite. In the following, we
will show both E1(t) and x1(t) are bounded.

E1(t) =

V1(σ1, t) +
1
2β

t∫
0

trace[(Θ̂1 −Θ)T (Θ̂1 −Θ)]dτ.

Take the derivative of the above energy function.

Ė1(t)

=
∂V T

1

∂t
+

∂V T
1

∂σ1
σ̇1 +

1
2β

trace[(Θ̂1 −Θ)T (Θ̂1 −Θ)]

=
∂V T

1

∂t
+

∂V T
1

∂σ1
σ̇1 +

1
2β

{trace[(Θ̂1 −Θ)T (Θ̂1 − Θ)]

−trace[(Θ̂0 −Θ)T (Θ̂0 −Θ)]}
+
1
2β

trace[(Θ̂0 −Θ)T (Θ̂0 −Θ)]. (15)

When i = 1, according to (12) and (13) , it can
be derived that

Ė1(t)≤−γ3,1(‖σ1‖)− β

2
‖α1(x1, t)‖2‖ξ1‖2

+
1
2β

trace(ΘTΘ)

≤ 1
2β

trace(ΘTΘ). (16)

Because Θ(t) is continuous over [0, T ], it is
bounded in the time interval [0, T ]. Therefore, we
can define

L = max
t∈[0,T ]

[
1
2β

trace(ΘTΘ)]. (17)

Then

|E1(t)| ≤ |E1(0)|+ |
t∫

0

Ė1(τ)dτ |

≤
t∫

0

|Ė1(τ)|dτ ≤
t∫

0

Ldτ ≤ LT.

Therefore, E1(t) is finite, which implies xj,1 (j =
1, · · ·,m) is bounded. Moreover, xj,1 belongs to a
compact set K.

Part B: Uniform Convergence of Tracking Error
Using (14) repeatedly we have

Ei(t) =E1(t) +
i∑

k=2

∆Ek(t)

≤E1(t)−
i∑

k=2

Vi−1(σi−1, t).

and

0 ≤ γ1,i(‖σi‖) ≤ Vi(σi, t) ≤ Ei(t) ≤
E1(t) ≤ |E1(t)| ≤ LT.

Obviously, ‖xj,i‖ (j = 1, · · ·,m) is bounded and
∀i ∈ N+, xj,i belongs to the compact set K =
{xj,i|γ1,i(‖σi‖) ≤ LT }. According to control laws
(8)-(9) and system dynamics (1), the boundedness
of xi ensures the finiteness of Θ̂(t), ui(t) and ẋi(t).
Consequently, the boundedness of ẋi(t) implies
the uniform continuity of xi(t).

Ei(t) is a non-increasing series with a finite upper
bound,

lim
i→∞

Ei(t) ≤ E1(t)− lim
i→∞

i∑
k=2

Vk−1(σk−1, t).

Therefore lim
i→∞

Ei(t) exists. Since E1(t) is finite

and Ei(t) is positive,
∞∑

k=2

Vk−1(σk−1, t) converges.

From the convergence theorem of the sum of se-
ries, lim

i→∞
Vi(σi, t) = 0, ∀t ∈ [0, T ], is guaranteed.

It can be seen from Assumption 1,



0 ≤ γ1,i(‖σi(t)‖ ≤ Vi(σi, t)

⇒ 0 ≤ lim
i→∞

γ1,i(‖σi(t)‖) ≤ lim
i→∞

Vi(σi, t) = 0

⇒ lim
i→∞

γ1,i(‖σi(t)‖) = 0.

Since γ1,i is a class-KR function,

lim
i→∞

γ1,i(‖σi(t)‖) = 0

implies lim
i→∞

‖σi(t)‖ = 0, i.e., pointwise conver-
gence.

As xj,i(t) is uniformly continuous on [0, T ],

lim
i→∞

‖ej,i(t)‖ = 0⇒ lim
i→∞

‖ej,i(t)‖s = 0. (18)

As i approaches infinity, xj,i uniformly converges
to xjd,i and the tracking error ej,i uniformly
converges to 0.

Remark 4. From practical point of view, Assump-
tion 2 is difficult to be guaranteed. Here let us
consider the initial shift problem. Assume that
ei(0) �= 0, but can be measured accurately since
system states xi are measurable. Because it is im-
possible to change values of xi(0), when xd,i(0) �=
xi(0), the first point (t = 0) cannot be learned
at all. The most effective and practical way is to
adjust the desired trajectories as below

x′
d,i =

{
hd,i(t) 0 ≤ t ≤ ts
xd,i(t) t ≥ ts

where ts is the time required for the modified
trajectory to reach the original one. Here hi(t) is
an interpolation to ensure that hi(0) = xd,i(0),
hi(ts) = xd,i(ts) and ḣi(ts) = ẋd,i(ts). Conse-
quently, the modified x′

d,i meets the Assumption
2. According to Theorem 1, the tracking error,
ei(t)

�
= xi(t) − x′

d,i(t), uniformly convergent to
zero as iteration time i approach infinity. More-
over, the system states can follow the desired
trajectories in the specified time ts.

4. ILLUSTRATIVE EXAMPLE

In this section, the following nonlinear dynamic
system is considered

ẋ1 = x2

ẋ2 = f + b[u+ d1] (19)

where b = esinx1 and f = 9(1 − cost) are
known functions. System uncertainties d1 = 4(1−
esint)cosx1 is unknown. The extended tracking
error is defined as

σi = x2,i − x2d,i + 5(x1,i − x1d,i).

Then
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Fig. 1. Convergence of the extended tracking
error.
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Fig. 2. Convergence of the extended tracking
error.

σ̇i = ẋ2,i − ẋ2d,i + 5(ẋ1,i − ẋ1d,i)

= gi + bi[ui + di − b−1gi]

where the system unknown part di = d1,i +
b−1
i (f +5x2 − 5x2d − ẋ2d) can be factored as Θξi.
Here Θ = [4(1− esint) 9(1− cost)−5x2d− ẋ2d 5]
and ξi = [cosx1 e−sinx1 x2e

−sinx1 ]T .

The simulations are performed for two classes of
trajectories:

Class 1 x1 = κisin
3(t)

Class 2 x1 = κie
−3t(πt3 − t4)

In both classes, t ∈ [0, π] and different values of
κi will lead to different desired trajectories.

Case 1 Trajectory of Class 1 is used. κi is
chosen randomly from the interval of [−1, 0) ∪
(0, 1] for each iteration. Here g is constructed
as gi = −6σi and Vi is chosen as Vi = 5σ2

i .
β = 2. The maximum extended tracking error σi

is recorded for each iteration and Fig. 1 shows the
convergence property.

Case 2 Trajectory of Class 2 is used. κi is also
chosen randomly from the interval of [−1, 0)∪(0, 1]
for each iteration. gi = −5σi, Vi = 6σ2

i and β = 3.
Fig. (2) shows the convergence of the extended
tracking error.

Case 3 Trajectories of Class 1 and Class 2
are used alternatively. gi, Vi and β are defined
respectively as in Case 1 and Case 2. κi is chosen
randomly from [−1, 0) ∪ (0, 1] for each iteration.
Fig. (3) shows the convergence of the extended
tracking error.

The above simulations clearly demonstrate the
ability of the proposed algorithm to learn from
different motion patterns.
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Fig. 3. Convergence of the extended tracking
error.

5. CONCLUSION

A novel ILC scheme for nonlinear systems is de-
veloped in this paper to deal with non-uniform
trajectory tracking problems. The parametric un-
certainties, as the learnable part, are separated
from the known system dynamics. Rigorous proof
based on CEF shows the tracking error uniformly
convergences to zero as iteration time approaches
infinity.
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