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Abstract: A neural control strategy for nonlinear processes with time-variant time-delay is
proposed in this paper. In this strategy, a dynamic neural network based nonlinear Smith
predictor is constructed to compensate for the effect of time-delay of a class of nonlinear
processes. An on-line optimizing controller is illustrated based on the neural Smith
predictor. It is known that the performance of the Smith predictor may be deteriorated if
the time-delay of the process changes with time. In order to improve the performance of
the Smith predictor, a time-delay adaptation mechanism is introduced into the control
structure to track the variation of the time-delay. The simulation, comparing with the
classical Smith predictive control, on a continuous-stirred-tank-reactor (CSTR), where the
time-delay of the manipulating flow changes with time, is used for the test.  Copyright ©
2002 IFAC
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1. INTRODUCTION

Many chemical or bio-chemical processes contain
time-delays. When time-delay is larger than or equal
to the time constant of the process, the closed-loop
control of the system will be very difficult. In this
case, one of the alternatives to handle the large time-
delay is to use prediction technique to compensate
for the influence of the time-delay. Smith predictor is
one of the simple and often used strategies to
compensate large time-delay in industries. Usually,
the Smith predictor is applied to linear systems. As
most of chemical or biochemical processes involve
not only large time-delay but also high non-linearity,
developing of a nonlinear Smith predictor for a
process, in which the non-linearity can not be
ignored, is necessary. Some literatures respectively
proposed a Smith predictor structures using nonlinear
models for nonlinear processes (Wong and Seborg
1988; Nahas, Henson, Seborg 1992; Tan and De
Keyser 1994). In this paper, we also construct a
nonlinear Smith predictor using dynamic neural
networks. Then, an on-line optimizing predictive
control strategy based on the neural Smith predictor
is illustrated.

Although there are some strategies of using nonlinear
model based Smith predictors, most of them only
considered the case where the time-delay is prior
known or the case where the time-delay is time-
invariant. However, in chemical or biochemical
industries, one can, sometimes, encounter the
situation that some processes may contain time-
varying time-delays. For instance, a manipulated
flow rate in a continuous-stirred-tank-reactor (CSTR)
process may change with time, therefore, it may lead
to time-varying manipulated time-delay. It is also
known that the Smith predictor is sensitive to time-
delay mismatch. If the effect of time variation of the
time-delay is significant, the dynamic performance of
the Smith predictor may be deteriorated. However, if
the on-line time-delay estimation is applied, in this
case, the Smith predictor can be still used. In this
paper, an on-line time-delay estimation mechanism is
introduced into the neural Smith predictor to track
the variation of time-delay so as to improve the
dynamic performance of the nonlinear Smith
predictor.
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It should be noted that there have been some
literatures about time-delay estimation (Reed,
Feintuch, and N. Bershad 1981; Lim, and Macleod
1995; Balestrino, Verona, and Landi 1998). However,
these results only considered the case of linear
systems. In order to handle the time-varying time-
delay in nonlinear bio-chemical processes, this paper
proposes a time-delay estimation strategy for the
neural network based nonlinear Smith predictor. A
nonlinear CSTR process with time-varying coolant
flow rate, which can be considered as a time-varying
time-delay in manipulated variable, is used for
simulation test of the proposed approach.

This paper is organized as follows: in section 2, a
neural network based Smith predictor is illustrated.
Then, in the 3rd section, an on-line time-delay
estimator for the dynamic neural network based
model is proposed to handle the time-delay tracking
problem. In section 4, the corresponding neural
predictive control strategy is developed. The
simulation on a CSTR process with time-varying
time-delay and the comparison between the proposed
approach and the conventional Smith predictive
control method are presented in section 5. Finally,
the 6th section gives the conclusions of this paper.

2. PREDICTOR USING NEURAL NETWORK

It is known that the Smith predictor (Smith 1957,
1959) is a simple and often used strategy for large
time-delay compensation. The principle of the Smith
predictor is to construct both of a model with time-
delay and a model free of time-delay as well. It is
assumed that the models that are used to describe the
process are precise enough. By subtracting the output
of the model with time-delay from the output of the
process, in this case, the model without time-delay
will play a dominant role in the architecture of the
Smith predictor. Therefore, the effect of the time-
delay of the process will be eliminated by this
compensation. As the Smith predictor is usually used
for linear systems, therefore, it will be necessary to
develop nonlinear Smith predictor for nonlinear
processes with large time-delay if the non-linearity
involved in the process can not be ignored. Wong
and Seborg (1988) proposed an affine nonlinear
model based nonlinear Smith predictor for nonlinear
system time-delay compensation. During the recent
decade, neural networks have been explored to
model and control some complex nonlinear systems.
Nahas, Henson et. al. (1992) proposed a Smith
predictor structure using neural networks. Tan and
De Kesyer (1994) used diagonal recurrent neural
network to construct nonlinear Smith predictor and
proposed on-line optimizing predictive PID control
strategy for nonlinear systems with large time-delay.
Huang, Lewis and Liu (2000) applied recurrent
neural networks to the Smith predictive control
structure for a tele-robot system. In this paper, the
nonlinear Smith predictor is built by using neural
networks with auto-regressive connection that is
motivated by nonlinear auto-regressive and moving
average (NARMA) model.

Suppose the process is described by the mapping

f: RR mn →+ , i.e.
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where kε  is the disturbance and noise sequence,
2C(.)f ∈ , nT
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mdkdkdk R]u,...,u[U ∈= −−−−  are respectively
the output and input vectors, and d is the time-delay.
The neural network based models used to construct
Smith predictors are respectively described by
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where kyd  is the output of the neural model with

time-delay, hT
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vector connecting the outputs of the hidden layer and
the output of the model,
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where na and nb are respectively the lags of the
output and input of the neural model, ijw s are the

weights. The introduction of the auto-regression of
the model output into the network can be useful to
simulate the dynamics of the process. The
corresponding neural model that is free of time-delay
can be described by
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Comparing (2)-(3) with (4)-(5), both of the models
have the same architecture and parameters. The only
difference between the two neural models is in their
inputs. It is assumed that the neural models are well
trained so that they can have accurate descriptions for
the cases of the process with and without time-delay.
Based upon this assumption, the following formula
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                                                                                (6)
where kyp  is the output of the Smith predictor, will
lead to
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It implies that the effect of the time-delay of the
process has been eliminated or the Smith predictor
has compensated for the effect of time-delay.

3. ON-LINE TIME-DELAY ESTIMATOR

The neural Smith predictor shown in above section
only considers the case where time-delay is prior
known and time-invariant. However, in chemical or



biochemical industries, one, sometimes, may
encounter the case where the time-delay varies with
time. For example, the variation of the manipulated
coolant flow rate in a CSTR process may result in
time-varying time-delay. If the neural model with
constant time-delay used in Smith predictor, in this
case, it will not match the time-delay of the process
and the effect of the time-delay will not be
compensated. Hence, the time-delay mismatch will
deteriorate the performance of the Smith predictor
(Balestrino et. al.,1998). Lim and Macleod (1995)
developed a time-delay estimate approach for linear
filter. Balestrino et. al. (1998) proposed a method to
estimate the steady state value of time-delay. In this
section, an approach using the technique of on-line
nonlinear programming to estimate the time-varying
time-delay for neural network based model is
proposed. Then, the resulted time-delay estimate
mechanism is embedded into the neural Smith
predictor so as to make the neural model in the
predictor track the change of the time-delay.

Consider the process with time-variant time-delay
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k
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where kτ  is the time-variant time-delay. It is
supposed to be separated as

kkk d δτ+=τ ,                                                        (9)

where kd is the integer part of the time-delay whilst

kδτ  denotes the fractal part of the time-delay, which
is constrained within the range of one sample period,
i.e. [0,1]. The corresponding neural model with time-
delay has the similar formulae as (2) and (3) but (3)
will be represented as
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in this formula, kτ̂  is the estimate of the time-delay.
The estimation of time-delay will be partitioned as
integer and fractional parts as well. In order to
estimate the time-delay, the estimator of the
fractional part of time-delay is proposed as follows:

)I,V(gˆ kkk =τδ ,                                                  (11)

where g(.) 2C∈  realizes the mapping g: RRq → ,
where q=q1+q2+q3; kV  is the weight matrix;
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formula (11) can be realized using a neural network,
i.e.
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Then based on the estimated result of the fractional
part, the integer part is adjusted separately.
Suppose that the time-delay changes slowly so that it
means that the time-delay can be considered as
constant during one sample period. For the
estimation of the fractional part of time-delay, the
gradient of the output of the neural model with time-
delay respect to τδˆ , i.e. τδ∂∂ ˆ/yd k  should be
calculated. Considering (2) and (10), it yields
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where ))x(s1(5.0
dx
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)x('s 2−== . In (11), the

effect of the recurrent connection to the gradient has
been considered. Using a method of first-order

interpolation can derive the gradient 
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From the first-order Taylor's series expansion, it
leads to
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Hence, the gradient of 
kˆku τ−  with respect to δτ  can

be derived as
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To determine the weights of the neural network used
for the modeling of fractional time-delay, the
gradients of τδˆ  with respect to iv  and ijv  are

calculated respectively by:
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Moreover, the gradients of the output of the neural
model with respect to the weights are obtained as
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as well as
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and the parameter matrices, i.e.
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Then, the estimate of these matrices will be
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where )2,1i(,0i =>λ  are the optimizing step-
sizes. If an optimizing algorithm with second-order
convergence, e.g. a modified Levenberg-Marquardt
method, is applied, the update of matrices, i.e. θ  and
ω, becomes
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adjustable factor. In order to increase the possibility
to escape from some local minimums, a momentum
term is embedded into this algorithm and 0>β  is

the momentum factor.

When the estimated kτ̂δ  is obtained, both the integer
part will be updated by (Lim and Macleod, 1995)
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where 10 <η<  is a very small number. To simplify

the procedure of on-line computation, one can pre-
train the neural model with unit time-delay off-line.
Then, the on-line update is implemented just for
time-delay estimation. The architecture of the neural
Smith predictor with on-line time-delay estimator is
shown in Fig.1. In this architecture, NMD denotes
the neural model with time-delay and NM represents
the neural model free of time-delay; the time-delay
estimator feeds the on-line estimated the time-delay
into the neural model with time-delay to compensate
for the variation of time-delay.

Fig. 1 Neural Smith predictor with time-delay
estimator

4. NEURAL PREDICTIVE CONTROL

The neural Smith control is developed based on the
neural Smith predictor with time-delay estimator
illustrated in above section. The control strategy is
considered as a on-line programming problem so that
the control approach can be described as

ypreand)e(Jminarcu pp
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where J(.) is the performance index for predictive
control, and r is the set-point of the control system.
The gradient algorithm with momentum term is
applied to this procedure of optimization. Thus the
control rule is as follows:

)uu(
u

J
uu 2k1k

1k
1kk −−

−
− −π+

∂
∂γ−= ,               (29)

where 0>γ  is the optimizing step size, and 0>π  is

the momentum factor. Notice that this structure is
equivalent to a low-pass filter which can suppress the
high frequency noise and oscillation. Also, the
momentum factor π is considered as the pole of the
low pass filter. Therefore its value should be
constrained within (0,1) to guarantee the stability.
From another point of view, the momentum term
may increase the possibility to jump out of some

local minimums in the case where 
1ku

J

−∂
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5. SIMULATION TEST

The proposed approach of neural Smith control is
tested on a simulated continuous-stirred-tank-
reactor (CSTR) process. The process considered
here is assumed that reactive species S flows into a
perfectly mixed tank where it undergoes an
irreversible exothermic reaction PS → .

Fig. 2 The CSTR process
The response of the process relates changes in the
cooling water rate in the reactor jacket to changes in
the concentration of species S in the reactor. The
process is described using the following
dimensionless differential equations (Uppal et. al.,
1974):
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where the parameters :D=0.072, C=0.3, B=8.0, and
φ=20.0; 1x  denotes the reactor conversion, 2x
represents the dimensionless reactor temperature, u is
the reactor jacket temperature, and τ  is the time-
delay as well. Suppose the process is sampled every
0.1 min.. Notice that the time-delay is a function of
time, which is supposed to be
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The neural network used to model the process, in the
case where the unit time-delay is considered, has the
architecture of two hidden nonlinear nodes and four
inputs, i.e. { )2k(u),1k(u),2k(x̂),1k(x̂ 22 −−−− }.
The model validation result is shown in Fig. 3. From
Fig. 3, it can be seen that the neural model can have a
good approximation to the process. Based on the
obtained neural model, we can construct the neural
Smith control system with time-delay estimator. The
neural network for time-delay estimation has the
structure of 12 hidden nodes and 4 auto-regressive
inputs, 4 past gradient of reactor temperature with
respect to control variable u, and 4 past error
between the process output and the neural model.
The control parameters are selected as 15.0=γ  and

75.0=π . The time-delay estimator is updated using
(24). It is noted that in this case, only the time-delay,
the scale variable is estimated so that computation
effort is greatly reduced.

Fig. 3 The model validation of the CSTR

The corresponding neural Smith control with time-
delay estimator is applied to the control of the
process. Fig. 4 illustrates the control results. While
the result of time-delay estimation is demonstrated in
Fig.5.

Fig. 4 Neural Smith control with time-delay
estimator

For comparison, the neural Smith control, with the
same control parameters as the strategy with time-
delay estimator but the time-delays are fixed on
constants, is also applied to the process. Fig. 6 and
Fig. 7 respectively show the results of the control
with estimated time-delay of 2 and 6 mins.. From
these control results, we can conclude that, in the

case of time-variant time-delay, the Smith control
with constant time-delay will not obtain satisfactory
control performance. It may lead to aggressive
control if the time-delay is under estimated or
conservative control suppose the time-delay is over
estimated. While the neural Smith control with time-
delay estimator can improve the dynamic
performance of the control system. Therefore, if we
want to obtain high quality control, the time-delay
estimator introduced into neural Smith predictor can
be one of the promising alternatives in the case
where time-delay changes with time. Also, the proper
selection of the parameters, i.e. γ  and π, in the

control algorithm shown in (29) will be important to
guarantee the robustness of the control system when
the time-delay mismatch exists. However, the robust
design to model mismatch will often lead to some
sacrifice of the performance.

Fig. 5 Time-delay estimated result

Fig. 6 Neural Smith control with under-estimated
time-delay

Fig. 7 Neural Smith control with over-estimated
time-delay

6.CONCLUSIONS

In this paper, a strategy of nonlinear processes with
time-delay is proposed. Firstly, the neural network



based Smith predictor can be used for time-delay
compensation for nonlinear processes. Then neural
network based time-delay estimator is proposed and
is introduced into the neural Smith control structure
to tackle the effect of time-variant time-delay.
Different from the adaptive time-delay estimators
respectively proposed by Lim and Macleod (1995) as
well as Balestrino et. al.,(1998), which can only
handle linear processes or only estimate steady state
time-delay, the proposed method can handle not only
nonlinear processes but also time-variant time-delay.
Moreover, the proposed method of time-delay
estimation has an advantage that the optimizing
procedure for weights training can be cut-off if the
weight-training is converged and the time-varying
region of time-delay is constrained.

The developed approach is tested on a simulated
CSTR process. The simulation results show that the
control performance is improved when the time-
delay estimator is introduced into the neural Smith
control architecture. Comparing with the neural
Smith control with constant time-delay, the method
proposed in this paper has obtained better dynamic
response.

As the procedure of time-delay estimation is
separated into integer and fractional parts. Therefore,
the selection of the initial values is very important to
the convergence. In this paper, the empirical method
is used but sometimes time-consuming. Hence, to
increase the robustness and efficiency to the
selection of the initial condition of the algorithm for
time-delay estimator is an interesting topic for the
research in the future.
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