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Abstract: This paper presents two stabilizing control methods for discrete time
bilinear systems. One is a stabilizing controller for single input systems, and the
other is a generalized stabilizing control method for discrete time multi-input
bilinear systems. The proposed control methods guarantee the stability for each
closed loop systems with single-input case and multi-input case, respectively. This
paper introduces a lemma used to extend the stabilizing control method which
is useful to represent any bilinear systems as pure differential(difference) matrix
equations. The proposed algorithms are verified by a numerical example.
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1. INTRODUCTION

Physical systems are inherently nonlinear in na-
ture. Also, many real physical systems in chem-
ical process, nuclear, engineering, biology, ecol-
ogy, socioeconomic, etc. are described by bilin-
ear models. Detailed reviews of bilinear systems
and their control design methods can be found in
(Mohler, 1991).

The stabilization problems for the bilinear sys-
tems have been widely studied in the past by
many researchers, see for examples (Chiou et
al., 2000)(Chen et al., 2000)(Chen and Tsao,
2000)(Chen et al., 1991)(Wang and Chiou, 1991).
For nonlinear systems, a powerful method in ro-
bust stabilization is the so-called Lyapunov ap-
proach. The advantage of this approach is that
the resulting closed-loop systems are globally
asymptotically stable. Many researches are de-

voted to the continuous time bilinear systems. In
(Niculescu et al., 1995) the closed-loop stability of
a class of continuous time bilinear systems with
time delayed state was studied. In (Chen and
Tsao, 2000) a nonlinear controller was designed
to exponentially stabilize the open-loop unstable
continuous time bilinear systems.

A nonlinear feedback controller for the stabiliza-
tion of discrete-time multi-input bilinear systems
having an external input was discussed in (Wang
and Chiou, 1991) by applying the Lyapunov’s
direct method. In their scheme each entry of a con-
trol input vector is separately obtained under the
assumption that system matrix is stable. Recently,
a novel approach to the design of nonlinear robust
stabilizing nonlinear state feedback controllers for
a class of singularly perturbed discrete bilinear
systems with single input was developed in (Chiou
et al., 2000).
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The main motivation of this work is to extend
the results of (Chiou et al., 2000) to discrete
time multi-input bilinear systems. In this paper
two control algorithms are presented to solve
the stabilizing problem of discrete time bilinear
systems. One is a modified stabilizing algorithm
based on the results of (Chiou et al., 2000) for
discrete time single-input bilinear systems. And
generalized stabilizing algorithm for discrete time
multi-input bilinear systems is presented. These
proposed methods also use the same Lyapunov
function. Moreover, this paper presents a lemma
used to extend to the multi-input systems which
is useful to represent bilinear systems as pure
differential(difference) matrix equations.

The organization of this paper is as follows: Sec-
tion 2 introduces the previous results of (Chiou
et al., 2000) and proposes a modified stabiliz-
ing algorithm for discrete time single-input bilin-
ear systems. The generalized stabilizing control
algorithm to discrete time multi-input bilinear
systems is presented in Section 3. In Section 4,
a numerical example is given. The conclusion is
given in the last section.

2. STABILIZING CONTROL FOR DISCRETE
SINGLE-INPUT BILINEAR SYSTEMS

Some necessary notations used in this paper are as
follows. Let <n×1 denote the usual n-dimensional
vector space and the norm of a vector x =
[x1 · · · xn]T on <n×1 be denoted by

‖x‖ =
(

n
∑

i=1

x2
i

)1/2

If A is an n×m matrix over <, then the norm of
A is defined by

‖A‖ =
(

n
∑

i=1

m
∑

j=1

a2
ij

)1/2

And spectral radius of a matrix A is denoted by
r(A).

Consider the discrete time single-input bilinear
systems described by difference equation of the
form

x(k + 1) = Ax(k) + Bu(k) + Mx(k)u(k) (1)

where x ∈ <n×1 is a state vector, u ∈ < is a
scalar control law, and A ∈ <n×n, B ∈ <n×1,
M ∈ <n×n are constant matrices. It is assumed
that r(A) < 1.

The following Lyapunov function candidate is
selected to derive the stabilizing control law.

V (x(k)) = xT (k)Px(k) (2)

where P ∈ <n×n in (2) is a unique real symmetric
positive-definite matrix satisfying the following
discrete Lyapunov equation

(1 + γ)AT PA− P = −In (3)

where γ is a positive constant satisfying
√

(1 + γ)r(A) < 1

Before dealing with the main problems, some
important preliminary lemma is reviewed.

Lemma 1. (Furnkama and Shimemura, 1983) Con-
sider the matrices A, B, and C, which have the
same dimensions, and let C = A + B. For any
positive constant γ and positive definite symmet-
ric matrix D, the following relation holds:

CDCT ≤ (1 + γ)ADAT + (1 + γ−1)BDBT (4)

The proof of this lemma follows from (Furnkama
and Shimemura, 1983). The following Theorem
2 discussing the stabilization control for discrete
time single input bilinear systems described in (1)
is essentially an extension of the results of (Chiou
et al., 2000) and provides an upper bound of input
for global asymptotic stabilizabilty.

Theorem 2. Consider discrete time single input
bilinear systems (1). The nonlinear state feedback
control law globally asymptotically stabilizes the
equilibrium point of (1).

u(k) =
−κCx(k)

√

1 + xT (k)CT Cx(k)
(5)

where C ∈ <1×n can be arbitrarily designed and
κ satisfies the following inequality.

κ < κ∗ =
1√
2

min
(( γ

(1 + γ)2‖CT BT PBC‖

) 1
2
,

( γ2

(1 + γ)2‖MT PM‖

) 1
2
)

(6)

PROOF. With the control law defined in (5), the
closed-loop system (1) can be rewritten as

x(k + 1) =
(

A− κBC
√

ϕ
− κMx(k)C

√
ϕ

)

x(k) (7)

where ϕ denotes 1 + xT (k)CT Cx(k). Denoting
∆V , ∆V (x(k)) and using (7), the Lyapunov
forward difference is given by

∆V = xT
(

A− κ
√

ϕ
(BC + MxC)

)T
P

(

A− κ
√

ϕ
(BC + MxC)

)

x− xT Px (8)

Using Lemma 1 and (3), (8) can be rewritten as



∆V ≤ xT
(

(1 + γ)AT PA− P

+
κ2

ϕ
1 + γ

γ
(BC + MxC)T P (BC + MxC)

)

x

≤ xT
(

− In +
κ2

ϕ
1 + γ

γ
((1 + γ)CT BT PBC

+
1 + γ

γ
CT xT MT PMxC)

)

x(k)

≤ xT
(

− In +
κ2

ϕ
(1 + γ)2

γ
CT BT PBC

+
κ2CT xT xC

ϕ
(1 + γ)2

γ2 MT PM
)

x (9)

Since the following inequalities are always satisfied
for any x and C

CT xT xC
1 + xT CT Cx

≤ 1,
1

1 + xT CT Cx
≤ 1, (10)

(9) can be rewritten as

∆V ≤ xT
(

− In +
(1 + γ)2κ2

γ
CT BT PBC

+
(1 + γ)2κ2

γ2 MT PM
)

x

≤ xT
(

− In +
(1 + γ)2κ2

γ
‖CT BT PBC‖In

+
(1 + γ)2κ2

γ2 ‖MT PM‖In

)

x

≤ xT
(2(1 + γ)2

γ
×max

(

‖CT BT PBC‖,

1
γ
‖MT PM‖

)

κ2In − In

)

x (11)

Clearly, the right hand side of (11) is negative
definite if and only if

max
(

‖CT BT PBC‖, 1
γ
‖MT PM‖

)

κ2 <
γ

2(1 + γ)2
(12)

This inequality completes the proof of this theo-
rem. �

Remark 3. The denominator of the second term
of right hand side of (6) is not zero, if M in (1) is
a zero matrix, then (1) becomes linear systems.

Remark 4. The necessary and sufficient condition
for the existence of a unique solution of discrete
algebraic Lyapunov equation (3) is that no two
eigenvalues have product equal to one (Gajic and
Qureshi, 1995), that is

λiλj 6= 1, i, j = 1, 2, · · · , n (13)

This condition is obviously satisfied if all eigen-
values of

√

(1 + γ)A are strictly inside of a unit
circle.

Theorem 2 slightly differs in the upper bound κ∗

from that of (Chiou et al., 2000) where the upper
bound was given by

κ∗ = min
( ( γ

(1 + γ)2‖CT BT PBC‖

) 1
2
,

( γ2

(1 + γ)2‖MT PM‖

) 1
2
)

(14)

3. STABILIZING CONTROL FOR DISCRETE
MULTI-INPUT BILINEAR SYSTEMS

A straightforward generalization of the previous
result to an extended class of discrete time multi-
input bilinear systems is noted in this section.
Consider again the discrete time multi-input bi-
linear systems described by difference equation of
the form

x(k+1) = Ax(k)+
n

∑

i=1

xi(k)Miu(k)+Bu(k) (15)

where u ∈ <m×1 is an input vector and B ∈
<n×m, Mi ∈ <n×m are constant matrices and
xi(k) is an i-th element of the state vector.
In the following, for convenience, xi(k) and
∑n

i=1 xi(k)Mi are denoted by xi and {xM}, re-
spectively. The following lemma is needed to de-
velop the stabilizing control law for discrete time
multi-input bilinear systems.

Lemma 5. Consider a vector x ∈ <n×1 and ma-
trices Mi ∈ <n×m and Ni ∈ <n×m with i =
1, 2, · · · , n. Then the following relation holds:

n
∑

i=1

xiMi =
n

∑

i=1

XiNi (16)

with unique Ni as follows:

Ni =











n1
i1 n1

i2 · · · n1
im

n2
i1 n2

i2 · · · n2
im

...
nn

i1 nn
i2 · · · nn

im











(17)

where nk
ij of Ni is an (i, j)-th element of Mk

matrix with j = 1, · · · ,m, k = 1, · · · , n. And the
i-th row of Xi ∈ Rn×n, i = 1, · · · , n, is xT and the
other rows of Xi are zero row vectors.

PROOF. The proof is easily verified by summing
the left hand side of (16). For simplicity we denote

Γ =
n

∑

i=1

xiMi (18)

Then each component Γij , j = 1, · · · ,m, of Γ is
given by

Γij = x1n1
ij + x2n2

ij + · · ·+ xnnn
ij

=
[

x1 x2 · · · xn
] [

n1
ij n2

ij · · · nn
ij

]T
(19)

Let Γi be a n×m matrix where (i, j)-th entry of
i-th row of Γi is Γij and the other rows are zero



vectors. Using Xi, Ni and from (19), Γi can be
rewritten as

Γi = XiNi =

















0 · · · 0
...

x1 · · · xn
...

0 · · · 0

































n1
i1 · · · n1

im
...

n2
i1 · · · n2

im
...

nn
i1 · · · nn

im

















(20)

Thus equation (16) holds by summing Γi over
[1, n]. �

Remark 6. This lemma shows that all bilinear
systems can be represented by pure difference
(differential) matrix equations.

The above lemma leads to the following result.

Corollary 7. The norms of the equation (16) have
the following relation.

‖
n

∑

i=1

xiMi‖ ≤ ‖x‖
n

∑

i=1

‖Ni‖ (21)

PROOF. The proof is directly verified from
Lemma 5. Taking norms on both side of (16), we
can obtain

‖
n

∑

i=1

xiMi‖= ‖
n

∑

i=1

XiNi‖

≤
n

∑

i=1

(

‖Xi‖‖Ni‖
)

(22)

Using the fact ‖Xi‖ = ‖x‖, we can obtain the
inequality of (21). �

The generalized stabilization control law for dis-
crete time multi-input bilinear systems described
in (15) is summarized in the following theorem by
using Lemma 5 and Corollary 7.

Theorem 8. Consider discrete time multi-input
bilinear systems (15). The following nonlinear
state feedback control law globally asymptotically
stabilizes the equilibrium point of (15).

u(k) =
−κCx(k)

√

1 + xT (k)CT Cx(k)
(23)

where C ∈ <m×n can be arbitrarily designed and
κ satisfies the following inequality.

κ < κ∗ =
1√

z + 1
min

(( γ
(1 + γ)2‖CT BT PBC‖

) 1
2
,

( γ2

(1 + γ)3‖N1‖2‖P‖

) 1
2
, · · · ,

( γn+1

(1 + γ)n+1‖Nn‖2‖P‖

) 1
2
)

(24)

where 1 ≤ z ≤ n is the number of nonzero Ni
matrices and all Ni are obtained via Lemma 5.

PROOF. The proof follows the same procedure
of the proof of Theorem 2 by substituting the
control law defined in (23) into (15), then we can
obtain the following closed-loop systems.

x(k + 1) =
(

A−B
κC
√

ϕ
− {xM} κC

√
ϕ

)

x(k) (25)

In this proof the same Lyapunov function defined
in (2) is used and it can be written by substituting
(25) and (15) into (2)

V (x(k + 1)) = xT (k)(A− τκBC − τκ{xM}C)T P

×(A− τκBC − τκ{xM}C)x(k) (26)

where
τ =

1
√

1 + xT (k)CT Cx(k)
Using Lemma 1, the Lyapunov forward difference
is given by

∆V = xT
(

A− τκBC − τκ{xM}C
)T

P

×
(

A− τκBC − τκ{xM}C
)

x− xT Px

≤ xT
(

(1 + γ)AT PA− P

+
(1 + γ)τ2κ2

γ

(

(1 + γ)CT BT PBC

+(1 + γ−1)CT {xM}T P{xM}C
))

x (27)

Using Lemma 1, 5, the term CT {xM}T P{xM}C
of (27) can be rewritten as.

CT
(

n
∑

i=1

xiMi

)T
P

(
n

∑

i=1

xiMi

)

C

= CT
(

n
∑

i=1

XiNi

)T
P

(
n

∑

i=1

XiNi

)

C

≤
n−1
∑

i=1

(1 + γ)i

γi−1 CT NT
i XT

i PXiNiC

+
(1 + γ)n−1

γn−1 CT NT
n XT

n PXnNnC (28)

Thus the inequality (27) becomes

∆V ≤ xT
(

(1 + γ)AT PA− P

+β2γκ2τ2CT BT PBC

+β2κ2τ2
(

n−1
∑

i=1

βiγCT NT
i XT

i PXiNiC

+βn−1CT NT
n XT

n PXnNnC
))

x (29)

where

βi =
(1 + γ)i

γi



Since 0 < τ ≤ 1, the inequality (29) can be
rewritten by using Corollary 7

∆V ≤ xT
(

− In + β2γκ2‖CT BT PBC‖In

+β2κ2 1
1 + ‖xT ‖‖CT ‖‖C‖‖x‖

×
(

n−1
∑

i=1

βiγζi + βn−1ζn

)

In

)

x (30)

where

ζi = ‖CT ‖‖NT
i ‖‖XT

i ‖‖P‖‖Xi‖‖Ni‖‖C‖
Since the following relation is always satisfied for
any x and C

‖CT ‖‖xT (k)‖‖x(k)‖‖C‖
1 + ‖xT (k)‖‖CT ‖‖C‖‖x(k)‖

≤ 1 (31)

(30) can be rewritten (30) as follows:

∆V ≤ xT
(

− In + β2γκ2‖CT BT PBC‖In

+β2κ2
(

n−1
∑

i=1

βiγ‖NT
i ‖‖P‖‖Ni‖

+βn−1‖NT
n ‖‖P‖‖Nn‖

)

In

)

x

≤ xT
(

− In + (n + 1)×max
(

(1 + γ)2

γ
‖CT BT PBC‖,

(1 + γ)3

γ2 ‖N1‖2‖P‖,

(1 + γ)4

γ3 ‖N2‖2‖P‖, · · · ,

(1 + γ)n+1

γn+1 ‖Nn‖2‖P‖
)

Inκ2
)

x (32)

Thus the right hand side of (32) is negative if and
only if

−1 + (n + 1)×max
( (1 + γ)2

γ
‖CT BT PBC‖,

(1 + γ)3

γ2 ‖N1‖2‖P‖,
(1 + γ)4

γ3 ‖N2‖2‖P‖,

· · · ,
(1 + γ)n+1

γn+1 ‖Nn‖2‖P‖
)

κ2 < 1 (33)

Since Ni matrix obtained via Lemma 5 may be
a zero matrix, any zero matrices Ni cannot be
considered as a candidate for minimum function
of (24) to prevent a denominator from being zero.
Therefore inequality (24) is satisfied. �

4. A NUMERICAL EXAMPLE

In this section, the proposed control method is ap-
plied to discrete time multi-input bilinear systems
described by

x(k + 1) =
[

0 1
−0.5 −1

]

x(k) +
[

−1 1
−2 0

]

x1(k)u(k)

+
[

1 2
0 1

]

x2(k)u(k) +
[

−0.5 1
2 1.5

]

u(k)

with the initial condition xT (0) =
[

1.0 1.5
]

. C of
(23) is chosen by

[

0 1|2 0
]

. Since C can be arbi-
trarily designed, κ∗ is obtained as 0.0149 accord-
ing to (24) and (3) and γ satisfying

√

(1 + γ)r(A) <
1. The simulation results are presented in Figure
1 and 2 which show the trajectories of the state
and inputs, respectively. These figures show that
state asymptotically converges to the equilibrium
point.
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Fig. 1. State trajectories
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Fig. 2. Input trajectories

5. CONCLUSION

In this paper, two stabilizing control schemes for
discrete time bilinear systems by using the Lya-
punov method are presented. For the single input
systems, the stabilizing control law is presented in
Theorem 2 and a generalized stabilizing control



method for the multi-input bilinear systems is
described by Theorem 8. Using the lemma in Sec-
tion 3, all bilinear systems can be represented by
pure difference(differential) matrix equations. The
simulation results show that the proposed control
methods globally stabilize the discrete time multi-
input bilinear systems.
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