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Abstract: In this paper soft sensors for a sulfur recovery unit in the ERG PETROLI 
petrochemical plant located in Priolo, Italy, are designed to parallel the online analyser which is 
often taken off for servicing. Three strategy have been compared, namely neural networks, 
neuro-fuzzy networks and nonlinear LSQ techniques. The best performance has been obtained 
with a neural NMA model and the soft sensor is now installed on the plant for online 
verification. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Controlling sulphur emissions from the sulphur 
recovery unit (SRU) in a petroleum refinery has 
important environmental and economic perspectives.  
Online analysers are used to measure concentration 
of both hydrogen sulphide and sulphur dioxide. In 
particular, the measurement of the quantity [H2S] – 
2[SO2] is performed in order to control the air-to-
feed ratio to the SRU. 
Online analysers which are at present installed in the 
SRU  suffer from reliability problems and have to be 
frequently taken off for servicing. In these occasions, 
the quantity [H2S] - 2[SO2]  is evaluated through 
statistical techniques carried out on past stored data. 
This estimate offers low performance because of the 
nonlinearity of the process. Moreover, the estimate is 
performed offline and is obviously useless for control 
purposes. The aim of this work is to design two soft 
sensors able to compute the SRU tail gas 
composition online by using a suitable set of 
measurements of the input variables of the process. 
These soft sensors should be able to replace the 

traditional analyser when it is affected by a fault or 
taken off for servicing. 
In particular, the soft sensors consist of nonlinear 
dynamical models, capable of predicting [H2S] and 
[SO2] separately. Non Linear MA models are 
considered, implemented through three different 
strategies, namely Artificial Neural Networks, 
Neuro-Fuzzy Networks, and LSQ Nonlinear Fitting. 
Models have been designed on the basis of 
experimental data collected at ERG PETROLI ISAB 
REFINERY located in Priolo, Italy, where the 
sensors designed are now installed online. 
 
 

2. THE SRU PROCESS 
 
The SRU is an important refinery processing unit. It 
removes the environmental pollutant H2S from gas 
streams before they are released to atmosphere. 
Furthermore, elemental sulphur (S) is recovered as a 
valuable byproduct. 
The final gas stream (tail gas) from the SRU contains 
residual H2S and SO2 formed by reactions. 
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An SRU is made up by four units. Each of them 
receives acid gas rich in H2S from the MEA plant 
and acid gas rich in H2S and NH3 from the SWS 
plant. Each unit is made up by a reaction furnace 
(F101) where air reacts with MEA gas in the heater 
B106. 
Total combustion of the ammoniac is obtained 
through the heater B103. In this part of the process 
the stoichiometric ratio is fixed. This ratio is 
maintained constant during the whole process by 
controlling the air flows in the furnace F101. 
The combustion products are let into a water-
condenser (E101) that furnishes elemental sulphur 
(70%) and a further fraction of gas, that is let into a 
catalytic reactor (R101) and then into a condenser 
(E102). It is not possible to recover sulphur only in 
one solution because of the large time of reaction. In 
order to obtain elemental sulphur at 90% the output 
of the condenser E102 is then let into the second 
catalytic reactor (R102) and then into the second 
condenser (E103)  
The temperatures in the reactors R101 and R102 do 
not affect the stoichiometric ratio. 
A simplified flow diagram of the process of one unit 
of SRU plant is shown in Fig.1. 
The reactions that occur in this process are the 
following: 
Some combustion of H2S occurs in the reaction 
furnace (F101) , according to: 
  

3 H2S + ½ O2 à SO2 + 2 H2S + H2O          (1) 
 
Effluent from the reaction furnace is further 
converted in the downstream catalytic converters 
(E101, E102, E103) according to: 
 

SO2 + 2 H2S à  Sx + 2 H2O                  (2) 
 
In the furnace (F101) the total combustion of the NH3 
contained in SWS also occurs : 
 

4 NH3  + 3 O2  à 2 N2  + 6 H2 O               (3) 
 

Air, which supplies oxygen for the reaction (1) is an 
important parameter in the conversion of H2S. 
Because of the reaction stoichiometry, if there is too 
much air in the reaction furnace, then the tail gas will 
contain too much of SO2. 
If there is too little air, then the tail gas will contain 
too much of H2S. 
The online analysers on the tail gas stream measure 
the concentrations of H2S and SO2. The desired value 
of the difference [H2S]-2[SO2] is zero, which implies 
that these pollutants are either absent in the tail gas or 
that the reactants in the second reaction are in 
stoichiometric proportion: this is an optimal 
condition for the total removal of the sulphur 
compounds in the catalytic converters. 
The value of the difference [H2S]-2[SO2] is used as 
the process variable for the feedback control of air-
to-feed ratio. 
In order to predict the concentrations of the 
pollutants H2S and SO2   in the gas stream in the case 
of a fault occurring in the on line analyser, a soft 
sensor has been designed. 
 
 

3. DATA ANALYSIS. 
 
In order to predict the concentration of H2S and SO2 
in the tail gas of an SRU, data were collected from 
the historical database of the plant. 
Five relevant variables, have been selected, driven by 
the experts knowledge of the system: 
 
- the gas flow in MEA zone (MEA GAS) 
- the air flow in MEA zone 1(AIR MEA1) 
- the air flow in MEA zone (AIR MEA 2) 
- the air flow in SWS zone (AIR SWS) 
- the gas flow in SWS zone (SWS GAS) 
 
The temperatures in the furnaces have been neglected 
because of their slight variations during the process. 
As a design guideline, only nonlinear MA models 
(which do not require to feed the model with delayed 
output samples) have been considered to satisfy the 
requirement made by the system operator to be able

 

 
Fig. 1. Simplified scheme of a SRU. 



 

 
to substitute a faulty analyser. Some experiment with 
NARX models have been carried out by feeding the 
network with delayed samples of the predicted 
output, achieving poor performance. 
As stated in the introduction, models have been 
obtained through three strategies: Artificial Neural 
Networks, Neuro-Fuzzy Networks and LSQ 
Nonlinear Fitting. The learning set includes 500 
samples, whereas the checking set includes 4000 
samples, with a sampling time of 1min.  
The whole set of variables is illustrated in Fig. 2.a-e. 

 

Fig. 2.a - AIR MEA 1 

 

Fig. 2.b. AIR SWS 

 

 

Fig. 2.c. AIR MEA 2  

 

 

Fig. 2.d. MEA GAS 

 

 

Fig. 2.e. SWS GAS 

The step trend of the variables AIR MEA 1 and AIR 
SWS is justified by the fact that these two variables 
are set manually by the plant operators to guarantee 
the reaction (2) to occur in stoichiometric proportion. 
The variable AIR MEA 2 is controlled by an 
automatic feedback loop. 
The output variables, which are illustrated in Fig. 3.a-
b. present isolated peaks that are the critical data set 
that should be predicted. 
 

 

Fig. 3.a. Measured output H2S 

 

 

Fig. 3.b. Measured output SO2 

 
 

4. NEURAL MODELS. 
 
Several neural models have been trained by using a 
MLP structure trained with the Levenberg-Marquardt 
Back Propagation algorithm (Hagan et al., 1994) in 
order to find the correct number of both the delayed 
samples (Chen et al., 1990) and the hidden neurons. 
All input variables have been normalised between the 
values 0 and 3, which correspond to the output range.  
Best results have been obtained with the models: 

 



 

[H2S](k) = f1 (x1(k), x1(k-5), x1(k-7), x1(k-9),.., x5(k), 
x5(k-5), x5(k-7), x5(k-9)) 

 
 

[SO2](k) = f2 (x1(k), x1(k-5), x1(k-7), x1(k-9),.., x5(k), 
x5(k-5), x5(k-7), x5(k-9)) 

 
each implemented by a 20-8-1 MLPs. The results 
obtained are illustrated in Figs.4-5 on a subset of the 
checking data set, in order to show more clearly the 
accuracy of the modelling in correspondence of the 
peak values. 

 

Fig. 4. Comparison between target and predicted    
output – test H2S 

 

Fig. 5. Comparison between target and predicted 
output – test SO2 

 
Fig. 6 shows a comparison between the predicted and 
measured process variables [H2S] – 2[SO2] used for 
feedback control of the air-to-feed ratio to the SRU. 
 
  

 

Fig. 6. Comparison between target and predicted 
output – test  [H2S] – 2[SO2] 

 
Although the results achieved are satisfactory, 
different modelling strategies have been implemented 
for comparison purposes. 
 

5. NEURO-FUZZY MODELS 
 

In order to design a Neuro-Fuzzy model the ANFIS 
(Adaptive Neuro Fuzzy Inference System) has been 
used by considering the same number of delayed 
input variables (L. Fortuna et al., 2001). 
The best configuration of the FIS model is composed 
by 6 rules and 6 membership functions per input both 
for the H2S and the SO2 models. 
The results are illustrated in Figs. 7-9. 
 
 

 
Fig. 7. Comparison between target and predicted 

output – test H2S 
 
 

 
Fig. 8. Comparison between target and predicted 

output – test SO2 

 
 

 

Fig. 9. Comparison between target and predicted 
output – test  [H2S] – 2[SO2] 

 
Comparing the results obtained with those obtained 
by neural models, no improvement is observed. 
Moreover, due to the computing power required by 
the fuzzy inference system when a dedicated fuzzy 
processor is not used, the fuzzy model has not been 
implemented online. 
 
 



 

6. LSQ NONLINEAR FITTING . 
 
A further comparison has been made by using a 
nonlinear multivariable rational function, like that 
used in (Quek et al., 2001) on a similar plant. In this 
work, a second order function has been adopted, in 
the form: 

            
       a0+ a11 x1 + a12 x1

2 +…………+ an1xn + an2 xn
2  

y = 
    1+ b0+ b11 x1 + b12 x1

2 +…………+ bn1xn + bn2 xn
2 

 
where n is the number of the inputs. 
The coefficients have been computed by using a 
nonlinear least square data fitting algorithm (Ponton 
et al., 1993). The results are illustrated in Fig. 10-12. 
The results are slightly worse than those obtained by 
neural modelling. However, due to their simplicity, 
both neural models and nonlinear LSQ models have 
been implemented online for a long on-field testing 
period. During this period, neural models showed 
best performance. In Fig. 13 the trend of a short 
portion of the online prediction performed during this 
period is illustrated, showing the successful 
performance of the soft sensor. 
 

 

Fig. 10. Comparison between target and predicted 
output – test H2S 

 

 

Fig. 11. Comparison between target and predicted 
output – test SO2  

 
Referring to Fig. 13, it can be noticed that 
performance remains comparable to that obtained 
off-line, considering also that the online results 
reported concern an operational period corresponding 
to six months later than the collection of training 
data. Moreover, the detriment of the performance 
occur only far from the relevant peaks, which are the 
significant data to be predicted. This online results 

are therefore considered by the plant operators as 
fully satisfactory 
 

 
Fig. 12. Comparison between target and predicted 

output – test  [H2S] – 2[SO2] 
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Fig. 13. Online prediction performance for H2S and 

SO2 respectively. 
 
  

7. CONCLUSIONS. 
 
In this work a soft sensor able either to parallel an 
analyser in an sulfur recovering unit or to replace it 
during its servicing periods has been designed and 
implemented through three different strategies: 
Artificial Neural Networks, Fuzzy Logic and LSQ 
Nonlinear Fitting. 
The soft sensor has been designed and installed on a 
petrochemical plant located in Priolo (SR), Italy. 
All the three techniques adopted lead to satisfactory 
offline results. Thanks to their computational 



 

simplicity, only the neural and nonlinear LSQ models 
have been implemented on the plant to be tested 
online. During the online testing, the neural model 
has shown the best performance. 
The satisfactory performance of the model allows us 
to maintain the control action on the SRU even when 
the analyser is taken off for servicing, thus improving 
the overall performance of the system. 
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