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Abstract: In this paper, direct adaptive neural netw orkcon trolis presented for a
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1. INTRODUCTION

While fundamental physical models are almost
always developed in continuous-time, computer
based control systems function in discrete-time.
In addition, the input output data available for
model identification is generally only available at
discrete time instants. F urthermore, over the past
few years, adaptive con trolfor con timous non-
linear system has been studied extensively. These
methods cannot be directly applied to discrete-
time systems due to some technical difficulties,
such as lack of applicability of Lyapunov tech-
niques (Kanellakopoulos, 1994) and loss of linear
parameterizability during linearization. These ob-
serv ations motivate us to develop adaptive control
scheme for discrete-time nonlinear systems.

Multi-lay er neural netw ork is a static feedforvard
net w ork that consists of a nmber of layers. It has
an important character, that MNNs with one or
more hidden layers are capable of appraximating
any continuous nonlinear function. This make it
one of the most widely used neural networks in
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system modeling and control. In this paper, w e
use MNN to emulate the implicit desired feedback
con troller. Because of the residual term of multi-
layer neural net w orkapproximation, projection
algorithms (Goodwin and Mayne, 1987)(Sastry
and Bodson, 1989) are used in this paper to
guarantee the MNN weights bounded in compact
sets.

F or nonlinear discrete-time systems, there has
been many discussions. In (Chen and Khalil,
1995), a specific class of nonlinear affine sys-
tems is investigated. The developed method will
lose its effect for non-affine nonlinear systems. In
(Goh and Lee, 1994), direct con trolof a general
nonlinear dynamical system is discussed based
on implicit function theory .The neural net w ork
con trol methodis firstly discussed for first order
discrete-time nonlinear system, and then the con-
trol scheme is generalized to high order discrete-
time nonlinear system without rigorous proof. In
(Cabrera and Narendra, 1999), discrete NAR-
MAX (Nonlinear Auto Regressive Moving Aver-
age with eXogenous inputs) non-affine systems
based on input-output models are discussed with-
out rigorous proof. In this paper, MNN neural net-



works are used to construct direct neural network
controller for a class of discrete-time non-affine
nonlinear systems. The stability analysis method
and the weight update laws are different from the
literatures listed above.

The main contributions of this paper are that
(i) provide an effective neural network control
method for non-affine nonlinear discrete-time sys-
tems which feedback linearization method is of
no use; (ii) propose a different kind of MNN
weight update law for discrete-time systems; (iii)
propose a modified discrete-time projection al-
gorithm compare to continuous-time projection
algorithm used in (Gong and Yao, 2001); (iv)
using MNNs to emulate the implicit desired feed-
back control (IDFC) of non-affine discrete-time
systems, which is not only a challenging topic but
also of academic interest.

2. PROBLEM

Consider one of the most popular nonlinear rep-
resentation NARMAX model known as 7-step
ahead observer equation

ylk+7)=flyk),...,ylk —n+1),uk),...,
ulk—n+1),dlk+7—-1),...,d(k))

:f(gkvu(k)aak—la(jk+r—l) (1)

where 7r = [y(k),...,y(k — n + DT, 45—y =
[u(k—1),...,u(k—n+1)]" and dp, 1 = [d(k+
7 —1),...,d(k)]Y. This model relates an input
sequence {u(k)} to an output sequence {y(k)} by
nonlinear difference equation. {d(k)} represents a
“modeling error” in this relationship.

Assumption 2.1. The unknown nonlinear func-
tion f(-) is continuous and differentiable.

Assumption 2.2. The disturbance d(k) is bounded,
|d(k)| < d, where d is a little unknown constant
and the partial derivative |%(fk)| < g2, where g
is a positive constant.

Assumption 2.3. Assume that partial derivative
g1 > |%| > € > 0, where both € and g; are
positive constants.

This assumption states that % is either positive
or negative. From now onwards, without lose of

generality, we assume that % > 0.

Assume that y,,(k + 7) is the reference output at
time instant £+ 7. Under Assumption 2.3, adding
and subtracting y,,(k + 7) to the right side of
equation (1) and using Mean Value Theorem

y(k+7) = ym(k +7) + £ Gk, w(k), Th 1, diyr 1)
—ym(k+ 1)
=Ym(k + 1) + f(Ur, w(k), tr-1,0)
+5?Jk+771 —Ym(k+7)
=Ym(k + 1) + f(Ur, w(k), tr-1,0)
—yYm(k+ 7) + da, (2)

where of
of = m|d(k+771):dsk+1_71 R
O i 17
d(k) €k
JE = [d§k+r—17 Ty dEk]Tv 6dk = 6?Jk+'r71

and JE € L(O, JkJrT,l).

Consider Assumption 2.2, we know that the dis-
turbance item g4, in equation (2) is bounded by
Sa, =067 dir—1 < g2d + god + ...+ god

= (T — ]_)de (3)

Define the tracking error as e(k) = y(k) — ym(k),
then the tracking error dynamic equation is given
ek +7)=—ym(k+7)
+f (G, u(k), r—1,0) + 0a,,  (4)
In the ideal case, there is no disturbance (d4, = 0),
if the control input u*(k) satisfying

f(gka’lj'*(k))ﬂkfl)o) _ym(k+7—) =0 (5)
system’s output tracking error will converge to 0.

Lemma 2.1. According to Assumptions 2.1 and
2.3 if |%(fk)| > ¢ > 0, then there exists a unique
and continuous function u* (k) = a“(gk, Ur—1, Ym (k+
7)) such that equation (5) holds.

Proof. See (Ge et al., 2001).
3. PRELIMINARIES

3.1 Multi-layer Neural Network

According to the neural network theory, there
exists an integer ! (the number of hidden neurons)
and ideal constant weight W* and V*, such that

w (k) = u*(z) = WS(V*"2) +eu(z) (6)
where z = [2,1]T and z is the input vector.
Following assumption is made for this function
approximation.

Assumption 8.1. On the compact set 2, the ideal
neural network weights W*, V* and the NN
approximation error are bounded by

WA S wm, [[V7lE < 0m, feu(2)] < er(7)
with w,,, v, and g; being positive constants.

Choosing s(z) = as the activation function.

Its derivative is

oy o ds@)] e
s (1‘) - dx - (1 + e—z)Q

It is easy to check that
0<s'(z) £0.25, |zs'(z)] <0.2239, = € R(8)

[
I1SF < ¢/ (67'2) < 0.251
i=1

!
15"V 2| <> |o] 28" (6] 2)] < 0.22390  (9)

i=1
here S = diag{s' (0T 2),...,s' (v %),..., s'(0f z)}
is a diagonal matrix. Using Taylor series expand



S(Y*Tf) abO}It VATZ, noting abbreviation S =
S(VTz)and V =V — V*, thus

STz =8-9VTz+0(V" 2  (10)
Using inequality (9), the high order term O(V1%)?2
is bounded by

IO 22| < 18772 + S(V*T2) - S(V73)]
<US VI + 11817 - IV ¥ [l - 1121
+HIS(V*Tz) = S|

Considering (9), [V*|lr < v and the fact that
1S(V*Tz) — S(VT2)|| < 1, we have
1O(VT2)?|| < 1.22300 + 0.250,01[|2]| (1)

3.2 Projection Algorithm

It is assumed that each element of W* and V*
is bounded, i.e., Py, min < Wi < Puw;max fOr
i = 1,...,0 and py;;min < Vij < Puyjmax for
t1=1,...,n,5=1,...,1, where the lower and up-
per bounds Pw,min, Pw,max; Pv,min, Pv,max maybe
unknown with n the input dimension of neural
networks and ! the neuron numbers. It is natural
to require that the estimates of the weights be
within the corresponding bounds. However, due
to the fact that these bounds may not be known
a prior, certain fictitious bounds have to be used.

In this paper, the following projection mapping is
used. Let pe,; min and pe,; max be the fictitious
lower and upper bound for ©;;, where © could
be any of the unknown weight vector or matrix.
Based on these fictitious lower and upper bounds,
similar to the projection algorithm in continuous
time(Goodwin and Mayne, 1987), a discontinuous
projection mapping Proj(x) can be defined as

Projg(x) = [Projé(*ij)] with its ¢jth element
being
62] = ﬁ@ij7max
i if and *ij5 <0
PI‘O‘]@(*U) = K 62] = ﬁ@ij7mi11 (12)
and *ij5 >0
*;j otherwise

where * denotes a vector or a matrix, then *;;
denotes its element.

Choosing weight update law as

O(k + 1) = O(k) — Projg (I'n) (13)

where I' = I'T > 0 is diagonal positive-definite
adaptation matrix, and 7 is adaptation function.
For simplicity, assume I' = AI with A > 0.

Lemma 8.1. For the projection algorithm (12)
and parameter adaptation laws (13) used in this
paper, the following properties hold:

(i) Parameter estimates are within the known
prescribed range, pe;; min < ©ij < Po;; max-

(i) In addition, noting © = © — ©, then

0" (I''Projg (') —n) > 0,0 € R®
tr{®" (I 'Projs(I'y) —n)} > 0,0 € R™*"

Proof. According to (12) and (13), it is obvious
that the first property always holds. Now we prove
the second property.

If © is a vector, consider the diagonal positive-
definite adaptation matrix I', noticing that the
operation of projection operator Projg (*;;) is to
change the sign of x;;, thus

0" (I~ Proj (I'n) — n) = 6" (L' I'Projg (n) — n)

= 0" (Projg (1) — )
!
= Z 0;(Projg (m:) — ms)

Then considering

0;(Projg (1:) — 1)
=0; — 0;)(Projg (m:) — m)

( (a)A (0; — 0;)(—n; _ﬂi) >0
Q; = ﬁ@l,max (1e 0, > G)z)
£l and n; < OA
_ 0; = po, min (ie. ©; <Oy
N and n; >0
(b)) (©;=0)(m —m) =0
L otherwise

we have ©7 (I ' Projg (') — 1) > 0 holds.

If © is a matrix, following the same procedure
tr{©" (T~ Projg (T'n) — 1)} >0

Its proof is omitted here. Q.E.D.

4. CONTROLLER DESIGN

Assumption 4.1. Considering the projection algo-
rithms we used, on the compact set 2., the esti-
mate neural network weights 1, V" and the weight
approximation error W, V are bounded by

||W|| < lf}m, ||V||F < ﬁm;

W < @y IVI[F < O (14)

where W =W —W* V =V —V* and W, Um,
Wy, Uy are positive constants.

Choosing auxiliary variables as follows
e = S(k)e(k + ) (15)
no = (ZW" (k)S' (k))e(k +7) (16)
where z = [z1,1]T with 2z = [k, Gr—1, ym (k+7)]7,
Tk, Ur—1 and ym(k + 7) are defined in Section 2.
S'(k) = diag[8}(k), ..., 5;(k)] is a diagonal matrix
and 8(k) = s'(0] z(k)).
Define the multi-layer neural networks update law

W (k +7) =W (k) — Proj;y;[Cunw] (17

N N

V(k+7)=V (k) — Projy[T'yn.] (18)



Subtract W* and V* to the both sides of the
equation (17) and (18), we obtain

W(k +7) =W (k) — Projs (Twihw) (19)
= W (k) — Projy, [CwS(k)e(k + 7)]
V(k+17)=V(k) — Projy(Tuny) (20)

= f/(k) — PrOjV[FU(ZWT(k)S'(k))e(k +7)]
where ', = FZ =Ml and T, = I‘z; =\, 1.

Lemma 4.1. Consider Lemma 3.1, we have the
following inequalities
W(F;lprojvﬁ/(rwnw) - nw) >0 (21)
tr{V (T, *Projy, (Tumy) —mu)} 20 (22)
Furthermore we have
Projli ' Projyy, — naLhnw =0 (23)
tr{Proj{, T, 'Projy } — tr{n Tl n,} =0 (24)
where Proj;, = Proj; (I'wnw) and Projy, =
Proj (F'ymy).
Proof. It is obvious that following Lemma 3.1,
inequalities (21) and (22) hold.

Considering equation (23), because Iy, = Ay, I, we
have
Projf, Iy Projy, — T
=Projyy, ()T Ly, T Projyy (1) — 1 Lyt
:Aw[Projjv‘;/(nw)ProjW(nw) - mew] =0
then equation (23) holds.
Considering equation (24), because I', = A, I, we
have

tr{ProjgrglProjV} —tr{n’TTy,}

= tr{Proj‘T/(nv)FvTI‘gvaProjV(nv)}
—tr{nfrfm}

= Avtr{Projg(nu)Projv(m) - nfﬂv}

=0
then equation (24) holds. Q.E.D.
Choose the practical control input as

u(k) =W (k)S(VT (k)z) (25)

where z = [27 17 with 2z = [k, Gg_1, ym (k+7)]7,
Tk, Gg—1 and Y, (k + 7) are defined in Section 2.
Noticing equation (6), then we have

=WTS+W*T(8 - §*) —eu(z)

Substitute u(k) into the error equation (4), using
Mean Value Theorem, noticing equation (5), then
we have

e(k+ 1)
:_ym(k + T) + 6dk + f(gk; U*(k)a U1, 0)

+%|u:£(v~VTS WS - 8 — eu(2))
=[WTS + W*T(S - %) — eu(2)] fu + 6a, (26)

where
_of

fu — %|u:£

§ € [u™(k), u(k)]

Theorem 4.1. For the non-affine discrete-time sys-
tem (1), neural network controller (25) and neural
network weight update laws (17) and (18). There
exist compact sets €y, €, {2, and positive con-
stants [*, A% and A} such that if

(i) the initial parameter set 2,,; € €y, Quy € Qu,
Qy, € Qy;

(ii) the neural number ! > [*, adaptive gain
Ay < A}, with A}, being the largest eigenvalue
of T'y, Ay < A}, with X} being the largest
eigenvalue of T'y;

(iii) the initial future output y(ko), - .., y(ko+7—
1) are kept in the compact set €, initial input
sequence u (ko) are kept in the compact set (y;

then the output of system (1) will track the de-
sired trajectory and the tracking error is bounded.
The closed-loop system is stable and all the signals
are bounded.

Proof. Choose the Lyapunov function as follows
1 T—1
J(k)=— e(k+j
(k) " z:: (k+7)
T—1 B B
+ 3 Wk + )T Wk + j)
7j=0
T—1 B B
+ > tr{VT(k + )0,V (k + 1)} (27)
7j=0
The first difference of (27) is given
AJ(k)=Jk+1)— J(k)

L, _e?
—g—l[e (k+7) — e’ (k)]

+WT(k+ 7T W(k + 1)
—WT (k) W (k)
+tr{VT(k + )T,V (k + 1)
~VI(R)LTV (k)}
Considering the neural network weight update
laws (19) and (20), we have
AJT(R) = g—ll[e2(k 1) — (k)]

—W"(k)T;, ' Projy, — Projl ') W (k)
+Projl; ', Projy;,
+tr{—V" (k)T 'Projy, — ProjiT, 'V (k)
+Pr0j‘T/I‘;1Pr0jV} (28)



Considering the projection algorithms used, there
are four possible Conditions:

(1) All the elements of W (k) and V (k) are within
the known prescribed fictitious bounds;

(2) Only some elements of W (k) reach the ficti-
tious bounds, equation (17) is applied;

(3) Only some elements of V (k) reach the ficti-
tious bounds, equation (18) is applied;

(4) Some elements of both W (k) and V (k) reach
the fictitious bound, equations (17) and (18)
are applied.

We will discuss them one by one in details below.

Condition 1. When all the elements of weight
W (k) and V (k) are within the known prescribed
bounds, equation (28) becomes

AJ(k)= g—ll[ez(k: +7) —e*(k)] —

TFan - QtT{V (k) } + tT{ﬂ«?Fva}
From equation (26), we obtain

o k B .
wTs = ek +7) = du, +;) e _wHT (S — 8*) + £4(2)
u
Furthermore, considering the adaptive function
(15) and (16), noticing that tr{V'zW7'Ss"} =
WTS'VTz, then
1 2
AJ(k)=[— = —le*(k+ 1) -
g1 u

207 (k)1

L 5

—e“(k

()

+2w TS = 5%)e(k + 1)

—2[ey(z) — %]e(k +7)

+8TTT8e(k + 1) — 2W TSV Ze(k + 1)
+tr{GWT ST (zW TS e (k + )

Noticing equation (10), Assumption 3.1 and

~2u(2) — ek + 7
ddy, 110 1,
<kolleu(z )|+| |] +k_0€ (k+7)
<koler + w]z’ + kioez’(k +7)

STTTSe?(k + 1) < A% le*(k + 1)

tr{(zWTé')TrT(zWTé')}62(k +7)
SHEL Z s ?e? (k +7)

where kg is a positive number. Therefore

N (DA STy T

glfk

k) + A1l Z

+2WTO(VTZ) e(k + T)
—2WT(8 = 5%)e(k + 1)

——e vi]2e*(k + 1)

]2
Noticing inequalities (8) and (11
Al Z

g0.0625A:||z||2||W||262(k +7)
<0.0625)7|2]|*w2,e*(k + T)

—1)g2d
-f-k‘o[é‘l + %

), we have

2 2 (k+71)

2WTOWVTz)%e(k + 1)
<2||W](1.22391 + 0.250,,1||2|]) e(k + 7))
< iy, (1.22391 4 0.250,,1|2])) [e(k + 7))
<2.4478iby,lle(k + 7)| + 0.5W,,v,,0|Z]|[e(k + 7)|

1.2239
——e*(k+71)
ks

<1.2239k 02,17 +

0 25
——||1z|]?€*(k + 7) + 0.25k 02,02,

1.2239 0.25
=k (k4 T) + |22k 4+ 7) + B
ky ky

—2WT(S = S"e(k+ 1) <2[|W|||e(k + )|
< 2plle(k +7)|

1
< k—ez(k +7) + ko2, 1?
2

1
=—e(k+7)+ b
ko

where k1, k2, 81 and B2 are positive constants and
B1 = 1.2239k1%2,1% + 0.25k; 02, v2,
ﬂz kz'LU l2

then we have

AJ(k) 2

1
<[— = = + ALl +0.0625X;] 2| w2,
g1 fu

1.2239
ky

Lo
e (k) + 5

025, ., 1 1.,
A 4+ - etk 7)

where

ﬁ:k0[6l+w

P+Bi+p8 (29
is a positive constant. Noticing that k; and ks
are not design parameters, they can be assumed
sufficient large. Further the initial value of vector
z are in a compact set 2., which will make ||Z]|
bounded, then by choosing appropriate parame-
ters Ay, Ay and neuron number [ to make the
coefficient of e?(k + 7) negative, that is to say
there exist a positive a satisfying

1 2
Ca= = 2 Al + 0.0625), ||7]|2@2,
g1 fu
12230 025 > 11
- —IEP + 4+ (30)

then



g1
<—ae’(k+7)+ 3
=—ale’(k+71) — g

Define compact set

0 o= el < /)

then we can see that if the initial parameter
20 = [Uko, Uko—1,Ym (ko + 7)] € Q. which means
that ||zo|| is bounded, then we can always choose
Aw, Ay and [ to guarantee the existence of positive
a. Then the tracking error e(k) will converge to
Q. as soon as e(k) out of compact Q. which lead
to the following sequence {z(k)} resident in the
compact set .. This will guarantee that for the
sequence Z(k), there is always ||Z(k)||* < C (Cis a
positive number) holds. Then the positive number

« always exist by choose appropriate A, A, and
l.

Finally, for all £ > 0, J(k) is bounded because
k
J(k) = J(0)+ Y _ AJ(j) < o0
=0
Condition 2. When only some elements of W (k)

reach the fictitious bounds, equation (28) becomes

AJ(k)= g—ll[ez(k: +7) — (k)]

—WT (k)T Projy, — Projl, T ' W (k)
+Pr0j7v{,I‘;U1ProjW
+tr{=VT (k)T ' Ty —
+(Cotpo) Ty Tyt }
Adding and subtracting —W7 (k)n, — LW (k) +

nETTn, to the right side of the above equation,
we obtain

AJ(k)= g—ll[ez(k: +7) — (k)]

(Fvnv)TI‘;1V(k‘)

W (k)nw — niW (k) + 0T
+tr{—VT (k)L 'Tyny — (Dony)TT, 1V (k)
+(Tm) Ty Tumy }

W7 (k) (T, Projy, — nuw)

~(Projy;, Ty," — )W (k)
+Projl; Ty ' Projyy, — ni Ll

Noticing Lemma 4.1, using equation (21) and (23),
we have

1
AJ(k) < 9—[62(%6 +71) =€’ (k)]
1
—WT (k0w — m, W (k) + 1y T
+tr{—VT (k)L 'Tyny — (Dyny) T, 1V (k)
+(Fvnv)TF;1Fvnv}

which is the same as we discussed in Condition 1.
Thus, we have the same result

AJ(k) < —ale*(k+T) — g]

where a: and § are defined in (29) and (30).

Following the same procedure in Condition 2, by
adding and subtracting appropriate items, the
proof of Conditions 3 and 4 also can be trans-
formed to condition 1, which we have proved that
the tracking error to be bounded in a compact set.
Its proof is omitted here for clarity. Then Theorem
4.1 holds. Q.E.D.
5. CONCLUSION

In this paper, MNN control of a class of non-affine
nonlinear discrete-time systems have been investi-
gated. Based on implicit function theorem, multi-
layer neural networks are used as the emulators
to approximate the IDFC controller. Projection
algorithms are used to guarantee the boundness
of the multi-layer neural network weights. The
stability of the closed-loop system is proved rig-
orously using Lyapunov theorem. The simulation
results show the effectiveness of the developed
control method. Notice that because of the space
limit, simulation results are not given here.
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