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Abstract: In this paper the frequency domain version of the Frisch identification scheme
is applied to identify parameters of the continuous-time model of an induction motor. A
formulation of the identification problemin the errors-in-variablesframework is given, in par-
ticular this formulation allows handling of periodic signals affected by noises with stochastic
properties. A new approach, based on Bilinear Matrix Inequalities, is introduced to estimate
noise variances of measured signals in the Frisch scheme. Simulations and experimental
results are reported to show the properties of the proposed approach. Copyright © 2002 IFAC
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1. INTRODUCTION

In electric drives based on Induction Motors (IM) a
key point to obtain a high-performance motion control
is agood knowledge of the physical parameters of the
electric machine. In fact, control of electric machines
is quite involved since the IM model is multivariable,
non-linear and strongly coupled. Typical control so-
[utions in industrial drives are based on Direct and
Indirect Field Orientation (DFO, IFO), often indicated
as “vector control” (Leonhard, 1995; Bose, 1997). In
nonlinear and adaptive control literature many efforts
have been devoted to devel op other control algorithms
for IM. Although different approaches have been used
(see(Ortegaet al., 1996; Nicklasson et al., 1997; Pere-
sada and Tonielli, 2000; Marino et al., 2000) for an
extensive overview), only partial and quite weak re-
sults have been obtained in terms of robustness with
respect to parameter uncertainties. Hence, at the state
of the art, a good knowledge of the parameters of the
electric model is a key point to realize a high perfor-
mance control of commercia IM drives. In addition,
also for diagnosis purpose the electric parameters of
a “healthy” induction motor must be identified with
high accuracy.

The traditional method for IM parameter estimation
based on locked-rotor and no-load tests (Leonhard,
1995) is now supplanted by automatic parameter
estimation procedures implemented in modern self-
commissioning industrial drives (Vas, 1998). Various
identification techniquesfor IM have been proposedin
literature (Pintelon and Shoukens, 2001; Moons and
De Moor, 1995; Pappano et al., 1998a; Pappano et
al., 1998b; Pappano et al., 1998c). These methods
can be divided in two main classes: the “on-line”
techniques and the “off-line” techniques. Methods be-
longing to the first class perform the parameter tun-
ing procedure while the motor is operating normally.
Instead, the second-class ones are based on tests per-
formed before starting normal operations and they are
more spread and reliable. Typically, off-line identifi-
cation procedures are performed at standstill in order
to be suitablefor industrial self-commissioning drives,
sinceit isrequired that the parameter tuning procedure
is performed “in system” (i.e. with the motor already
connected with the mechanical 1o0ad).

In this paper it is presented a new identification
method based on the frequency domain version of
the Frisch identification scheme (FIS), developed by



the authors in (Beghelli et al., 1997) and theoretically
analyzed in (Castaldi and Soverini, 1996). The FIS,
which deals with linear errors in variables models
(LEIV), is particularly suitable for the estimation of
the IM model at standstill. In fact this model is linear
and both the input and output measurements are dis-
turbed with noise, hence resulting in a LEIV model.
Some theoretical aspects are considered for reconfig-
uring the FIS schemein the framework of the classical
frequency domain identification methods using peri-
odic excitation signal and parametric stochastic noise
model. It is worth observing that proper choice of
the excitation signal allow avoiding leakage problems
of the Discrete Time Fourier transformation (DFT).
Moreover it will be shown that the solution of the FIS
problem can be obtained by solving a Bilinear Matrix
Inequality (BMI) problem. This formulation allows,
also in the practical case, preserving some theoretical
positivity conditions concerning the estimated power
spectrum of the noiseless input and output signals.
These conditions are not fulfilled by the procedures
already present in literature. Finally it will be shown,
in the case of IM identification, that the solution of
the BMI problem is quite easy, thus resulting in an
efficient IM identification in the practical case.

The paper is organized asfollows. In Section 2 the ba-
sic statements of the Frisch identification scheme are
given, then a reformulation in terms of BMI problem
is presented. In Section 3 simulation and experimen-
tal results are reported: particular attention is paid to
the selection of the exciting signal and the frequency
characterization of the additive noise.

2. FREQUENCY DOMAIN DYNAMIC FRISCH
SCHEME

Let us consider two scalar periodic signals 4 (t) and
g(t), t € R, which are the input and the steady-state
output of alinear, lumped, time-invariant, continuous
time, stable system described by the transfer function

N(s) _ Do Br s*
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In the case of periodic excitation signals, the DFTs
Uber(wi) and Yoer (wy) of the sampled input and out-
put signal are linked by the relation

YDI——r(wk) = G(jwk)UDFr(wk) (2)

wherewy, =kwy, k=1... M aretheangular frequen-
cies of the sinusoids constituting the input and output
signals, and wy = h%e, h € N, with w, equal to the
sampling frequency and N > 2Mh is the number
of samples. It is worth observing that aliasing and
leakage problems have been avoided by synchronizing
the frequenciesw; and w as above reported.

G(s) = m<n (1

In an errors-in-variables environment the measure-
ments are assumed disturbed by noises fulfilling the
following hypothesis.

Assumption 1. ThemeasurementsUper(wi,) and Yoer (wi)

are related to the exact values Uper(wy) and Yoer (wi)
by
Uper(wi) = Uprr(wi) + Uper(we,)

Yorr(wi) = Yorr(wi) + Yorr(wi) )

By defining
Tt =[]
ien=[5700] ®

the Frisch scheme framework is defined by Assump-
tion 2.

Assumption 2. Thenoise Zm-—r(wk) iszero-mean, with
or 0

E[Zon(iZona)] = [T 1] @

E |:ZDFI'(WI€)ZDFI'(UJ]')T] =0 Vk,j
E [ZDFr(wk)ZDFr(wj)H] =0 Vk#j

with the superscript H indicating the Hermitian trans-
pose.

)

The previous model of the frequency characteristics
of the noise, jointly with Assumption 1, corresponds
to time-domain sequences () and ¢(-) which are
zero—mean white noises, mutually uncorrelated and
uncorrelated to the noiseless signals a(k) and g (k).

Thevauesc? and o are (up to aknown scalar factor
depending on the number of samples) the variances
of the actual noise sequences @(-) and 4(-). In the
following it will be assumed that the variances o,
oy are unknown. A situation of this type is referred

(Beghdlli et al., 1990) as dynamic Frisch scheme.

Remark 1. In (5) no correlation is assumed between
input and output noises. In literature, different meth-
ods have been presented to deal with more general
cases, where correlated noises are present (Schoukens
et al., 1997; Beghelli et al., 1990). By the way, this
extension does not seem necessary for IM parameter
estimation as enlightened by the experimental results
reported in next sections.

From the previous definitions and assumptions, it fol-
lows that (note that some notations are introduced
too):



Note that, because of Assumption 2, ®;4(wy) =
®,,, (wi), i.€. the cross-spectra between the noisy and
the noiseless input-output signals are identical.

Matrix ®(wy) is positive definite, while the linear
link (2) between the input-output signals leads to a
singular nonnegative definite spectral density matrix
& (wy,) whose entries satisfy the following relation

Pya(wi) gy (wi) = Puy(wi) Pyulwr)  (9)
and

oy Pgp(wr)  Pyulwr)
G(jwr) = Doy (o)~ Dua(on) (10)

Under the previous assumptions, the identification
problem can thus be stated as follows.

Problem 1. Let the noisy measurements be generated
in accordance with the dynamic Frisch scheme As-
sumption 1 and 2 and let the noisy spectrum ®(w,) be
given. Determine the transfer function G(s) and the
values (variances) o; and o ; .

The problem of identifying the transfer function G(s)
can be solved in the following way (Beghelli et al.,
1997):

(1) for a given frequency, wy, determine al the
nonnegative definite matrices of structure ® =
diag(og,05), i.e al the couples (o3, o), such
that matrix ®(wy,) is singular nonnegative defi-
nite R R

D(wg) = P(w) — 2 >0
2 = 11
{ det (®(wg)) =0 (1)

(2) andyze how the solution set obtained at the

previous step varies with wy,.

With reference to the first step, in (Beghelli et al.,
1997), it has been shown that, for a given frequency
wy. the solution set of relation (11) describes in the
first quadrant of the plane (04, 05) the segment of
hyperbole with equation

(Ruu(wi) = 0a) (Byy(wi) —05) = |Ruy(wr)]® (12)

with the constraints (0 < o3 < o (wy)), (0 <
oy < ag”m(wk)) where

o n) = Bunfin) — T2 Resln)

@i ulw)
max _ _ Tuy k yu\Wk
o " (wi) = Pyy(wr) B ()

Every point (o3, o) on the curve is associated to the
complex value G 5, .+, (jwk)-

When the spectrum ®(wy,) has been generated by an
errors-in—variables model with noises fulfilling As-
sumption 2, the curves of type (12) for all values of w,
necessarily have at least one common point (o7, 0;)
whose coordinates are the true values (variances) of
the noises. In correspondence of this point, by means
of (10) it is possibleto obtain the true transfer function

The search of a solution for the identification problem
may, thus, start from determination of this point on
the plane (o4, o). Once the noise variances have been
estimated, the values of the transfer function G(jwy)
at different frequencies can be computed by means of
relation (10).

2.1 Determination of the common point: a BMI
problem

Now by defining

T1 (o)
T2 = (27 (14)
I3 O30

the determination of the common point solution can
be obtained solving the following Bilinear Matrix In-
equality (BMI) optimization problem (Vandenberghe
and Venkataramanan, 1997)

,

0 T
T1T2 Z Ir3 — €
—X1Ta > —T3 — €
I Z 0
To Z 0
e>0
min[l(x1, x2,x3,€)]

(w1, 2,73,€) = Y _[w5 — Py (wh) T

By (@)1 + B () By (1)
L _|¢uy(wk)|2)]+€

Note that #(x, x2, x3,€) is the linear function to op-
timize under BMI constraints. This is a non-convex
problem and few algorithms for solving the general
problem are already present in literature (branch and
bound, global optimization agorithms). On the other
hand, this case is quite easy to solve, thanks to the
presence of the nonlinear term z 25 only. For this
reason, as it will be shown in the following, an easy
optimization procedure can be used in order to effi-
ciently find the solution of the BMI problem.

P (wi) — {xl 0 } >0

(15

3. SIMULATION AND EXPERIMENTAL
RESULTS

The identification scheme reported in previous section
has been applied to the IM model , performing an off-
line procedure with the motor at standstill.

Under the hypothesis of linear magnetic circuits and
balanced operating condition, the equivalent two-
phase model of a squirrel-cage Induction Motor, rep-
resented in the (a —b) stator reference frame, is
(Leonhard, 1995; Bose, 1997; Peresada and Tonidlli,
2000):

da
dt

= —Oélba - w% + aLmia



iy
dt
dt
di , 1

= = s+ abiy — Bt + Vi

dv 1 . .

L= Wai - i) -TL)  (16)

where (V,, Vi), (ia, i), (a, 1), w are stator volt-
ages, stator currents, rotor fluxes and rotor speed and
Ty, istheload torque.

= _a¢b + W"/}a + aLpip

. 1
= =7 + aﬁ'ﬁba + wab + ;Va

Positive constantsin model (16), related to IM el ectri-
2

cal parameters, are defined as: 0 = L, (1 - LLf)

B=Jpa=1y= (% +alnf), =35,
where R, R,, L, L, are stator/rotor resistances and
inductances respectively, while L, is the mutual in-
ductance between stator and rotor windings.

From (16), with zeroinitia statesand null load torque,
whereas only one phase of the IM is excited, it follows
that no torque is produced, the standstill condition is
preserved and the two phases “a’ and “b” are fully
decoupled. Therefore, if V,(t) = 0, only the two
equations related to “a’ variables can be considered,
sinceall thevariables of the b-phase are assumed equal
to zero. Hence, the IM at standstill is modelled as a
2-nd order LTI system and it is represented by the
following transfer function between the stator voltage
V. (t) and the stator current i, (t):

L5+ a)
G(s) = 220 _ o
Va(s) 2 +5(y +a) + a(y — aLmp)

(17)
The identification procedure for the IM electrical
parameters is based on the measures of stator cur-
rents y(kTs) and stator voltages u(kTs), with k =
0...N —1, where N is the number of samples and
T, isthe sampletime.

The frequency domain identification of the IM relies
on the discrete Fourier transform of the input and
output signals Uprr(wr), Yprr(wi), obtained from
the sampled 1/O variables. It is well known that a
proper choice of the excitation signal is necessary to
avoid spectral leakage and alias errors in the compu-
tation of the discrete Fourier transform. In particular,
the sample frequency should be sufficiently high to
avoid aliasing. Moreover, a periodic signal should be
considered and an integer number of signal periods
should be used as temporal window: in this way, the
DFT coincideswith the Fourier transform of the signal
in the sampled frequencies (Kay, 1988; Stoica and
Moses, 1997).

To obtain a correct estimation of the IM moddl, it is
necessary to excite the motor in a broad frequency
range. Two different voltage signals have been sepa-
rately imposed to the IM. With the first one, the IM is
excited in the low-frequency range, applying a multi-
sine in the band [0.122Hz, 5.737Hz] with step f, =

0.244Hz. With the second one, the IM isexcited in the
high-frequency range, applying amultisinein the band
[5.859Hz, 95.703Hz] with step f, = 3.906Hz. The
estimated transfer function G'(jwy,) has been obtained
combining the data deriving from the two different
excitation signals.

The initial phases of the sine functions have been
imposed as ¢! = —=DT 1o optimize the crest
factor (Pintelon and Shoukens, 2001). Moreover, the
current and voltage signal s have been sampled only af-
ter theinitial transient for the identification procedure,
to consider only the steady-state behavior of the IM.
The amplitude of the multisine signal has been set in
order to avoid the excitation of the IM in the magnetic
saturation region, ensuring the validity of the linear
model (17).

In the error-in-variables framework presented in the
previous paragraphs, the measured input-output sig-
nals (and hence the DFTS) are the sum of a deter-
ministic term (the “actua” signals) and a stochastic
one (the noise). According to assumptions reported in
the problem statement, the noises are supposed uncor-
related and white. Unfortunately, as it is well known
(Pintelon and Shoukens, 2001), the spectral matrix of
independent random finite sequences, calculated by
means of DFT, is variable with frequency and depen-
dent on the particular realization. An additive diagonal
noise power spectrum diag(og, o), independent by
the frequency as required in problem statement, can
be obtained if the mean value over an infinite amount
of realizations is considered. For this purpose, the
adopted solution consists in performing the average
of DFTs relative to different realizations obtained by
considering a certain number of shifted time windows.
In this way, a reduction of the noise variance in the
frequency domain is achieved. Note that no distortion
is introduced on the noiseless signal, since the time
windows are multiple of the adopted multisine period.

The BMI optimization problem for the noise iden-
tification with the Frisch scheme has been solved
utilizing the function for constrained nonlinear opti-
mization problem fmincon of the Matlab Optimization
Toolbox. The results reported in the sequel have been
achieved executing twice the noise-level identification
algorithm, since the first result has been used to re-
move some outliers in the frequency range. In fact,
the noise spectrum of experimental data, even after
averaging, is not constant. This fact, combined with
“positive definition constraints’ of the BMI problem
leads to an underestimation of the noise level. This
phenomenon has been partially compensated remov-
ing the frequencies (8% of the total number) where
the determinant of spectral matrix ®(w;) after first
“cleaning process’ is closer to zero (outliers).

Once estimated the additive noise, the estimated co-
variance matrix has been determined and the “phys-
ical” parameters of the IM transfer function can be
identified considering the nonlinear weighted least



Table 1. IM parameters

Rs 6.692 o 0.041
R, 5.50 B 23.3
Lg 475mH « 11.6
Ly 475mH ¥ 283
L, 454mH

square problem with cost function
D NG Gwr) = Gliwn) "W |G (Gwr) — G i)l
k

where TV isaweight matrix for themagnitude errorsat
different frequencies, G(jw) is the identified transfer
function, given by theratio (1) and estimated by means
of relation (10), and G (jw) depends on the estimated
physical parameters as (17). During tests, matrix W
has been chosen equal to the identity matrix.

The motor used in simulation and experimental tests
is a 1.1kW 50Hz IM. Parameters identified using
traditional methods based on no-load and locked-rotor
tests arereported in Table 1. With these parametersthe
resulting poles of G(s) in (17) are -288 and -6.46, the
zerois-11.6 and the static gain is 0.151.

During experimental tests, stator currents have been
measured using closed-loop Hall sensors, while stator
voltages have been measured with a Y-connected re-
sistive divider. The stator voltages have been imposed
by a standard three-phases inverter with a 10KHz
symmetrical-PWM control. Simple techniques based
on phase current sign (Jeong and Park, 1991) have
been used to compensate for the effects of the dead-
time, set to 1.5 s. The proposed estimation scheme
have been implemented on a control board equipped
with a floating-point DSP, TM S320C32. The adopted
sampling time has been set to 200 s for the voltage
signal generation, while for the identification proce-
duresthe input/output signals have been sampled with
Ts = 64ms in the low-frequency test and T = 4ms
in the high-frequency test. For both tests, the number
of samples used for the DFTs was N=128, while 1024
samples have been acquired to perform the DFT aver-
ages, as described before. Hence, the frequency reso-
lution is equal to 0.767rad /s and 12.27rad /s respec-
tively. The off-line identification algorithm has been
implemented in Matlab. The computational burden of
the BMI optimization problem is affordable with a
standard PC: with a Pentium 111 350MHz the noise
estimation is performed in about 2 sec.

At first, the performances of the proposed method
have been analyzed by means of a simulated exper-
iment. The detailed results for the two feeding mul-
tisines are summed up in Table 2, where the imposed
and estimated standard deviations of the superimposed
random input and output measurement noise are also
reported, for the two different experiments at low and
high frequency. Notethat inideal conditions(flat spec-
tra of the noise) the estimation algorithm works per-
fectly, while the estimation errors are only due to the
non-flatness of the noise spectra related to finite data

Table 2. Simulation results

Low-freg. High-freq.
Varus 6.92V 6.92Vv
o 1.22v 1.09v
oy 0.85v 0.76V
o; 0.30A 0.24A
oy 0.21A 0.17A

Estimated G(s)

Mag. (dB)

Frequency (rad/s)

Fig. 1. Bode plots of G’(s) prior (dashed) and after
(solid) the application of Frisch scheme (simula-
tion data).

Estimated G(s)

Mag. (dB)

10

Frequency (rad/s)

Fig. 2. Bodeplotsof G/(s) and G(s) (simulation data).

Table 3. Estimated IM parameters and stan-
dard deviations (simulation data).

Real value | with Frisch sch. | without Frisch sch.
o’ 283 292(23) 315(22)
«a 11.57 11.62(2.49) 11.68(2.51)
LS 10.56 11.18(2.10) 11.75(2.22)
o 0.0411 | 0.0394 (0.0020) 0.0361 (0.0016)

sequences. Anyway, satisfactory estimation of noise
variance is obtained and positive definiteness of the
covariance matrix is assured. Fig. 1 shows the Bode
plot of the transfer function G(s) prior and after the
application of the Frisch scheme. In fig. 2 the sampled
and optimum transfer function are shown.

A set of 10 simulations has been performedin order to
evaluate the performance of the identification proce-
durefor IM parametersusing the Frisch scheme. Table
3 reports the estimated |M parameters obtained using
the Frisch scheme. Also the IM parameters estimated
without the implementation of the Frisch scheme are
reported as comparison. Note that in this case abiased
estimation is obtained, due to uncorrect estimation of
the IM transfer function.

In the second test, experimental results are presented.
The procedure for noise estimation and parameter
identification has been repeated 10 times and the mean
values of the estimated parameters are presented. The
results relative to one of the experimental tests are re-



G(s)

Mag (dB)

Frequency (rad/s)

Fig. 3. Bode plots of Gi(s) and G(s) (experimental
data).

Table 4. Estimated IM parameters (experi-

mental data).
i « LB a
value | 271 8.2 100 0.039
std 20 1.8 32 0.005

ported in fig. 3, where the Bode plots of the estimated
G and optimum G (after parameter identification) are
shown. The estimated noise standard deviations are
0.71V (0.22A) for the input (output) signal in the
low frequency test and 0.57V (0.117 A) in the high
frequency test. Finally, table 4 sums up the results
of al the experimental tests, reporting the estimated
values of the physical IM parameters and the standard
deviations.

4. CONCLUSIONS

A new identification procedure based on the frequen-
tial Frisch scheme has been proposed. The FIS has
been reconfigured to deal with periodic signalsjointly
with parametric stochastic noise models. It has been
shown that the solution of the FIS problem can be
obtained by means of an optimization problem with
BMI constraints. The effectiveness of the method for
identifying IM model by means of an off-line proce-
dure has been illustrated by experimental results.
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