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Abstract: An alternative approach for intelligent tuning of a control loop will be presented in
this paper. The objective is to design an algorithm which will tune the controller employing a
neuro-fuzzy based algorithm. Structure and design method based on this approach will be
explored, which include an adaptive network employed as building block, the back-
propagation gradient method and least square estimator as a hybrid learning rule, and its
integration with tuning algorithm. The effectiveness and the performance of the proposed
intelligent tuning method will be demonstrated by on-line controller tuning of a process mini-
plant. Experimental results show some potential benefits on applying the proposed technique
using the real-world process plant.  Copyright ©2002 IFAC
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1.  INTRODUCTION

The tuning of controllers is a task that requires a
considerable amount of expertise in order to achieve an
adequate performance in term of process control. Until
now, simple controllers of the Proportional Integral
(Derivative) / PI(D) type are still going through an
interesting development. This type of controllers is the
major practical control technology which is widely used
in the process industries at present. Although PI(D)
control has been succesfully applied to process control
and many other control problems, it still has some major
limitation. Its performance depends heavily on the plant
operating parameters. Once these parameters change, a
significant amount of effort is required to retune the
controller manually. Various approaches have been
developed to design PI(D) controllers which have the
ability to adapt to a changing operating environment
automatically (Koivo and Tanntu 1991, Aström and
Hagglund 1995).  In recent years, there have been
several attempts to incorporate the intelligent
methodologies, including neural network, expert and
fuzzy system, into the control loops (see e.g. Aström
1991, Gupta and Sinha 1996). Various industrial
application of intelligent methodologies, either for

modeling and control, have been developed succesfully
in several areas of application.

Recent research efforts have also been shown to
combine the neural network methodology and the fuzzy
systems methodology. The primary motivation is the
integration of the strength of both methodologies in
order to achieve learning and adaptation capabilities and
knowledge representation via fuzzy if-then rules,
producing the so-called neuro-fuzzy systems. The main
advantage of the neuro-fuzzy controller is its learning
capability from the numerical data obtained from the
measurements and hence no mathematical model of the
plant to be controlled is needed, which is very
advantageous for the plants where its mathematical
models are difficult to derive.

Owing to the effectiveness of the neuro-fuzzy approach
in its learning capabilities (Nazaruddin and Yamakita
1999, Alturki and Abdennour 1999) has given a
motivation that an alternative method to automatically
tune the controller using neuro-fuzzy approach could be
explored. An architecture of the so-called adaptive
neuro-fuzzy inference system has been further
investigated. The effectiveness and the performance of
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the proposed intelligent tuning method will be
demonstrated by on-line controller tuning of a process
mini-plant. Performance comparison was also made if
the plant was tuned using the conventional Ziegler-
Nichols method.

2.  ADAPTIVE NEURO-FUZZY INFERENCE
SYSTEM SCHEME

By using the neuro-fuzzy scheme, the fuzzy inference
system can be tuned with a neural network algorithm
based on some collection of input-output data, which
then allow the fuzzy system to learn. An architecture of
neuro-fuzzy described as Adaptive Neuro-Fuzzy
Inference Systems/ANFIS (Jang, et.al., 1997) is
illustrated in Fig. 1. In this architecture, fuzzy if-then
rules, obtained from human experts to describe the
input-output behaviour of complex systems can be
refined and if human expertise is not available,
reasonable membership functions are set-up intuitively
and the learning process is initiated to generate a set of
fuzzy if-then rules to approximate a desired data set.

Fig. 1.  Adaptive neuro-fuzzy inference systems scheme

The basic learning rule concerns with how to
recursively obtain a gradient vector in which each
element is defined as the derivative of an error measures
with respect to parameters. A solution called hybrid
learning rule which combines the gradient method and
the least square estimator is applied to avoid a slow
convergence and possibility to be trapped to local
minima as experienced by the conventional back-
propagation learning rule. A fuzzy inference system of
Tagaki-Sugeno of the first order which has two inputs
and one output can be described by the following rule
base

Rule i-th : If x is Ai and y is Bi Then fi = pi x + qi y + ri  i
= 1,2,...,m

where m denotes the number of rules. Fig. 1 describes a
neuro-fuzzy structure which is equivalent to 2 rules. The
architecture consists of 5 layers with different functions
in every layer. The description and its function in every
layer can be summarized as shown in Table 1.

In the above structure, the adaptive network is
manifestated only by layer 1 and 4.  The parameters in
layer 1 and 4 are referred to as premise parameters and
as consequent parameters respectively. In the 1st. layer,
the adaptive parameter is the parameter of the

membership function of input fuzzy set, which  is
nonlinear function of the system output. The parameters
in the 4th. layer are the linear function of the system
output, assuming that the parameter of the membership
function is fixed. In general, the structure has nonlinear
adaptive parameter in the 1st. layer and linear adaptive
parameter in the 4th. layer. Due to the linear relationship
with regard to the output parameters, then a least-square
estimator (LSE) can be applied for the learning process.
Suppose that S1 is a set of nonlinear parameters and S2 is
a set of linear parameters in the architecture. The
learning process applies the gradient descend and the
least-square algorithm (Jang, et.al., 1997) to update the
parameters in S1 and S2 respectively.

Table  1.  The description and its function in every layer

Layer 1 : adaptive node with node function :

O xi Ai1, ( )= µ  and O yi Bi1, ( )= µ

Layer 2 : fixed node with firing strength of a rule :

O w x yi i A Bi i2, ( ) ( )= = µ µ  , i =1,2

Layer 3 :
fixed node with normalized firing strength :

O w
w

w wi i
i

3
1 2

, = =
+

, i =1,2

Layer 4 : adaptive node with node function :

O w f w p x q y ri i i i i i i4, ( )= = + +

Layer 5 : fixed node which computes the summation
of signals : O w f w fi5 1 1 2 2, = +

The Learning Process for the Linear Parameters :

If the parameters in S1  in figure 1 is fixed, then the
output of the system can be written as

f w f w f w x p w y q w r
w x p w y q w r

= + = + + +
+ +
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From the above equation, it can be seen that the
consequent parameters are linear parameters with
respect to the systems output. If  P learning data is
applied to the Eq. (1), it can be shown that it can be
represented by A yθ = , where θ  is an unknown vector

whose elements are parameters in S2  and y is the output
vector whose elements are P learning data. Using the
least-square estimator, the best solution of this equation
will be given by

θ θ θi i i i i
T

i
T

iP a y a+ + + + += + −1 1 1 1 1( )             (2.a)

P P
Pa a P

a Pa
i i

i i i
T

i

i
T

i i
+

+ +

+ +
= −

+
1

1 1

1 11
                 (2.b)

with ai
T  is row vector of matrix A , yi is the i-th element

of y, and Pi is the covariance matrix.

The Learning Process for the Nonlinear Parameters:

The learning process uses the simple steepest descend
method, where each parameters are updated using the

relation α α η ∂ ∂αnext now E= − +( / ) , causing
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E Enext now( ) ( )α α< , where α is the node parameter

and η is the learning constant and ∂ ∂α+E /  denotes
the ordered derivative of the error signals

E y yd( ) ( )θ = − 2  (i.e. the difference between an actual

trajectory and a given desired trajectory) with respect to
the node parameter α.

3.  NEURO-FUZZY BASED TUNING OF PI
CONTROLLER

In general, the transfer function of PI controller is given
as sKKsG IPs /)( += with Kp and KI  are proportional

and integral gain respectively. In another form, PI
controller is formulated as ))//(11()( sTKsG Iips +=
with TI = KP/KI  is known as integral time constant.
Further, the discrete version of the controller can be

written as ∑+= )()()( keTKkeKku IIP , with u(k)

represents control signal and e(k) represents error
between process output and setpoint.

Basically, the automatic tuning procedure is performed
on the two controller parameters, i.e. proportional gain
Kp and integral time constant Ti until transient system
response meets the desired performance specification.
Similar to the tuning strategies in Yen et.al. (1995), the
rules used can be stated in the form

If performance-measure is X1 then  ∆Kp is Y1

If performance-measure is X2 then  ∆KI is Y2

where X1 and X2 are fuzzy sets describing the
performance measure, and Y1 and Y2 are fuzzy sets
describing the amount of correction to the scaling factor
of the controller parameters. The performance measure
used for criteria of tuning is percent maximum overshoot
(OV), defined as

%100)).())()(((.max ∞∞−= cctcOV p .

Based on above rules, for the adaptive neuro-fuzzy
inference system mechanism, learning data with 2n input
and n output are collected, in the format of
[ ]pda KOVOV ∆  to tune the component of Kp and

format [ ]Ida KOVOV ∆  to tune the parameter KI ,

where  OVa is the actual OV and OVd is the desired OV.
These data are collected by varying P and I parameters
of the controller and registering the overshoot, for
different operating conditions of the plant. Tuning
procedure is then performed iteratively until the desired
transient response is achieved. In each step, controller
parameters are updated as follows
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4.  PROCESS MINI-PLANT DESCRIPTION

The proposed neuro-fuzzy based PI controller tuner was
tested on a real-time fluid level control of a laboratory
scaled process mini-plant. The tuning and controller
algorithm was implemented as software which
developed using C++ language and run on a personal

computer connected on-line to the process mini-plant.
The plant consists of a tank reactor containing fluid
which is to be controlled and  several industrial devices
to measure fluid flow and level. An interface card is
attached to the personal computer to enable direct data
acquisition from the level transmitter and to send control
signal to the control valve. View of the process mini-
plant and its process flow diagram are shown in Fig 2.
and 3, respectively.

Fig 2. View of process mini-plant
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Fig. 3.  Process flow diagram of the mini-plant to be
controlled

To observe the plant characteristics and how it behaves
for different scattering data of Kp and KI, which will be
used for learning data, initial step response test was
conducted on the process mini-plant. The test was
performed using set-point of 50% level and a sampling
period of 1 sec. The plant response is illustrated in Fig 4.
and the performance measure for plant characteristics,
given in its percent overshoot (OV) and rise time (RT),
is given in Table 2. Based on this result, learning data
for parameter Kp was taken for the range of Kp between
0.3 and 5.

Table 2.  Plant performance for various values of Kp

Kp OV(%) RT (sec.)

0.3 55.88 21
1 14.62 20
5 Oscillate 32



Fig. 4.  Plant response to a step input of 50%

5.  EXPERIMENTAL RESULTS AND EVALUATION

Tuning of PI controller using the proposed adaptive
neuro-fuzzy approach was performed based of 161 pairs
of input-output data, which were taken from 5 different
conditions of mini-plant characteristics. Based-on
observation of plant performance test, the initial
condition for Kp was set to 0.3 and TI to 10 sec.,
resulting an overshoot (OV) of 77.62% and rise time
(RT) of 13 sec. The tuning procedure was then
performed iteratively using the adaptive neuro-fuzzy
scheme, explained above, so that a desired overshoot of
5% could be achieved. As performance measure, the
root means square of the error (RMSE), defined as

RMSE = 
k

nTe
k

n
∑

=1

2)(
                  (4)

and the integral of time multiplied absolute error
(ITAE), defined as

ITAE = ∑
=

k

n

nTek
1

)(                   (5)

where e(.) denotes the error at time k and T is the
sampling instant, were used in all experimental studies.
Table 3 shows the results of the tuning after few
iterations. Plant response after tuning procedure with Kp

= 3.1 and TI =10 sec. and with Kp = 3.1 and TI =17.26
sec. are shown in Fig. 5.

Table 3.  Result of tuning PI controller using the
adaptive neuro-fuzzy scheme

Itera-
tion

Kp TI OV
(%)

RT
(sec.)

1 1.28 10 32.5 10
2 2.344 10 12.88 12
3 3.1 10 6.5 12
4 3.1 17.26 3.12 27

Iteration 1 2 3 4

RMSE 9.05 7.851 8.367 9.01
ITAE 27272 14130 12143 15818

As comparison, a tuning procedure based on
conventional Ziegler-Nichols closed-loop method was
also conducted in the experiment. The procedure
consists of estimating the ultimate gain Ku, i.e. value of
gain which result in critically stable system while using
only gain controller, and measuring the ultimate period

Pu, i.e. oscillation period while closed-loop system is
critically-stable.
Based on these two information and using an empirical
formula, PI controller were determined, which yields
parameters setting parameters for PI controller, i.e Kp =
0.567 and TI =51.7 sec. The plant response using this
controller parameters is illustrated in Fig. 6. As observed
from the transient response, an overshoot of 9.6% and
rise time of 31 sec. are produced by using this type of
controller.

(a).  Kp = 3.1 and TI =10 sec.

(b).  Kp = 3.1 and TI =17.26 sec.

Fig. 5.  Plant response using neuro-fuzzy based
controller tuner

Fig. 6.  Plant response using Ziegler-Nichols tuning
procedure

As can be observed, better performances are shown
using the controller tuned with the designed adaptive
neuro-fuzzy based tuner compared to the conventional
Ziegler-Nichols method. As not in the case of the latter
method, the neuro-fuzzy based controller tuner can also
be tuned based on the desired performance criteria,
which in this case is the percent overshoot, which was
set to 5% in the experiments. The best performance was
given if  Kp = 3.1 and TI =10 sec. was used as also
confirmed by the value of  RMSE and ITAE.
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6.  CONCLUSIONS

An alternative technique for control loop tuner using
adaptive neuro-fuzzy inference mechanism has been
presented and succesfully implemented in tuning a
controller on real-time control of a process mini-plant.
Better performance was also shown from the experimental
results compared to the conventional tuning using Ziegler-
Nichols method. The controller parameters can be tuned
based on desired transient response specifications,
namely overshoot percentage and rise-time. Further,
compared to Ziegler-Nichols method, tuning of neuro-
fuzzy based PI controller works iteratively and will not
bring the system into critical-stable condition.
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