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1. INTRODUCTION

Splines have been investigated in 1970s as a ba-
sic tool of applied mathematics (de Boor, 1978),
(Schumaker, 1981). The dynamic splines based
on linear control theory were first used in tra-
jectory planning by Crouch and collaborators
(Crouch and Jackson, 1991). For statistical appli-
cations, an important result was made by Wahba
(Wahba, 1990). Further, in a series of papers
(Agwu and Martin, 1998), (Egerstedt and Mar-
tin, 2001), (Martin and Egerstedt, 2001), (Sun
and Martin, 2000), Martin and his collabora-
tors have studied some of the basic properties of
smoothing splines from the view point of optimal
control. Based on these papers, it is possible to
reconstruct noisy distance data using visual in-
formation. We will use this data to reconstruct
unknown boundaries using smoothing splines. For
purpose of this paper our data was collected using
a laser range finder. This results in less noisy
data, then would have been obtained using strictly
visual information.

2. NOTATION AND PROBLEM
DESCRIPTION

In this section, we will establish some notation
that will be used throughout this paper. We will
assume as given a controllable and observable
linear system of the form

ẋ = Ax+ bu, x(0) = x0

y = cx
(1)

where x ∈ IRn, y, u ∈ IR, and A, b and c
are constant matrices of compatible dimensions.
Further, the data we consider in this paper is given
in terms of time and output as

D = {(ti, αi) : i = 1, · · · , N} (2)

where we assume that 0 < t1 < t2 < · · · < tN .

The general problem of dynamic splines that we
want to solve is the following.

Problem 1. The problem is to produce a control
u(t) which drives the output function y(t) either
through or close to the data αi at time ti while
minimizing some cost function J(u, x0).

Solving the differential equation (1), we have

y(t) = ceAtx0 +

t∫
0

ceA(t−s)bu(s)ds.

Then let

y(ti) = ceAtix0 +

ti∫
0

ceA(ti−s)bu(s)ds (3)

where the ti’s are the interpolation times. We now
define a set of linearly independent basis functions
(see, (Sun and Martin, 2000))
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gt(s) =




ceA(t−s)b t > s

0 t ≤ s

and define the linear functional in terms of gt(s)
as

Lt(u) =

T∫
0

gt(s)u(s)ds

where the value of T is at least as large as tN .
Then we can rewrite (3) as

y(ti) = ceAtix0 + Lti(u). (4)

This notation is useful in that Lti(u) is expressed
as an inner product in an appropriate space.

3. INTERPOLATING SPLINES

In this section, we will establish the form of in-
terpolating splines that are optimized over initial
data as well as control. We consider the following
cost functional

J(u, x0) =

T∫
0

u2(t)dt

and solve the following optimal control problem
in the Hilbert space H = L2[0, T ]× IRn. That is,
we now ask the following modification to Problem
1 as follows:

Problem 2. For u ∈ L2[0, T ] and x0 ∈ IRn,

min
u,x0

J(u, x0)

subject to the constraints

y(ti) = αi.

Using (4) we now construct the Lagrangian

L(u, x0, λ)

= J(u, x0) +
N∑

i=1

λi(y(ti)− αi)

=

T∫
0

u2(t)dt+
N∑

i=1

λi(ceAtix0 + Lti(u)− αi)

where λi shows the Lagrangian parameter. In
order to obtain the necessary conditions for a
local minimum (Luenberger, 1969) we take par-
tial derivatives in the sense of the Gateaux.

Namely, now our goal is to minimize this func-
tional L(u, x0, λ) over the Hilbert space L2[0, T ]×
IRn. We calculate the Gateaux derivative as

∂L(u, x0, λ)
∂u

(w)

= 2

T∫
0

u(t)w(t)dt+
N∑

i=1

λiLti(w),

∂L(u, x0, λ)
∂x0

(z0) =
N∑

i=1

λice
Atiz0,

∂L(u, x0, λ)
∂λ

(γ)

=
N∑

i=1

γi(ceAtix0 + Lti(u)− αi).

Setting these three equations equal to zero we
have the necessary conditions such that

u(t) = −1
2

N∑
i=1

λigti(t), (5)

N∑
i=1

λice
Ati = 0, (6)

ceAtix0 + Lti(u) = αi, i = 1, · · · , N. (7)

Note that the problem is finite dimensional be-
cause it follows from (5) that the space of controls
is finite dimensional. Substituting u from (5) into
(7) we have N equations in N + n unknowns.
However from (6) we have n additional constraints
and hence we have N+n linear equations in N+n
unknowns. Making the substitution we have

−1
2

N∑
i=1

λi〈gtj , gti〉+ceAtjx0 = αj , j = 1, · · · , N.

Let

G = (〈gtj , gti〉)

and note that G is the Gramian matrix. Further,
let

P =




ceAt1

...
ceAtN


 . (8)

We can rewrite the equations in the form

−1
2
Giλ+ Pix0 = αi, i = 1, · · · , N

and

PTρ = 0

where λ = (λ1, · · · , λN )T , Gi denotes the ith row
of the matrix G, and Pi denotes the ith row of



the matrix P . In terms of a system of equations
we can write(

G −2P
PT 0

) (
λ
x0

)
=

(−2α
0

)

where α = (α1, · · · , αN )T . Using elementary row
operations we can reduce the system to the fol-
lowing form(

I −2G−1P

0 −P TG−1P

) (
λ
x0

)
=

( −2G−1α

−P TG−1α

)
.

It follows from this form that the system has a
unique solution if and only if PTG−1P is positive
definite. Since G is positive definite, the matrix
PTG−1P fails to be positive definite if and only
if there exists an x0 such that Px0 = 0. This can
happen if and only if for each i, ceAtix0 = 0 and
this can happen if and only if

span{ceAti : i = 1, · · · , N} �= IRn.

The question of uniqueness is very difficult to
answer explicitly (Martin and Smith, 1987).

4. PERIODIC SMOOTHING SPLINES

Based on the discussion in the previous section,
we now consider the case of periodic smoothing
splines. The optimal problem is the following
which is just a restatement of the previous section.

Problem 3. For u ∈ L2[0, T ] and x0 ∈ IRn,

min
u,x0

J(u, x0)

subject to the constraint

y(t1) = y(tN ) (9)

where

J(u, x0)

= τ

T∫
0

u2(t)dt+
N∑

i=1

λi(ceAtix0 + Lti(u)− αi)2

and the constant τ is assumed to be strictly posi-
tive.

The condition (9) is called “periodic”. Let the
Lagrangian

L(u, x0, µ)

= τ

T∫
0

u2(t)dt+
N∑

i=1

λi(ceAtix0 + Lti(u)− αi)2

+µ(y(t1)− y(tN )) (10)

be given where µ ∈ IR\{0}. Note that the rate
of convergence of the optimal control depends

on the choice of the parameter τ (see (Sun and
Martin, 2000), (Wahba, 1990)). As before we want
to minimize L(u, x0, µ) and obtain the optimal
control u, and the optimal initial data x0 as well
as µ.

First, calculating the Gateaux derivative of L(u, x0, µ)
with respect to u we have that

∂L(u, x0, µ)
∂u

(w)

= 2

T∫
0

[
N∑

i=1

λi(ceAtix0 + Lti(u)− αi)gti(t)

+τu(t) +
µ

2
(gt1(t)− gtN (t))

]
w(t)dt.

Setting this equal to zero we find the condition
that

N∑
i=1

λi(ceAtix0 + Lti(u)− αi)gti(t)

+τu(t) +
µ

2
(gt1(t)− gtN (t)) = 0.

Therefore we see that we must have the optimal
u as a linear combination of gti ’s,

u(t) =
N∑

i=1

ρigti(t). (11)

Substituting the u of (11) into (10) we have

L(ρ, x0, µ)

= τρTGρ+
N∑

i=1

λi(βi + ρTGei)2

+µ{c(eAt1 − eAtN )x0 + ρTG(e1 − eN)}
= τρTGρ+ 2ρTGDβ + ρTGDGρ+ βTDβ

+µ{c(eAt1 − eAtN )x0 + ρTG(e1 − eN)}
where ρ = (ρ1, · · · , ρN )T ,D is the diagonal matrix
of the weights λi, ei is the ith unit vector, and β
denotes the vector (β1, · · · , βN)T defined by

βi = ceAtix0 − αi, i = 1, · · · , N.

Calculating the Gateaux derivative of L(ρ, x0, µ)
with respect to ρ, x0 and µ, respectively, and
setting three expressions equal to zero we have
the necessary conditions such that

τGρ +GDβ +GDGρ+
µ

2
G(e1 − eN) = 0,

N∑
i=1

λi{pi
kce

Atix0 + (−αi + θi)pi
k}+

µ

2
φk = 0,

c(eAt1 − eAtN )x0 + ρTG(e1 − eN) = 0

where pi
k denotes the kth column element of ceAti ,

φk = p1
k − pN

k , and θi = ρTGei, i = 1, · · ·N ,



k = 1, · · · , n. Then, by deformation of the above
equations we obtain that


G+ τD−1 P

1
2
D−1(e1 − eN )

PTDG PTDP
1
2
φ

(eT
1 − eT

N)G φT 0




×

 ρ

x0

µ


 =


 α

PTDα
0




(12)

where P is defined in (8) and φ = (φ1 · · ·φn)T . Let
us abbreviate (12) as AB = C. As we mention in
the previous section, it may be difficult to see that
(12) has a unique solution. That is, the conditions
may be inconsistent. But it may have a unique
solution in which case the minimization problem
is irrelevant. Namely, A is invertible and then we
can obtain a unique optimal control u by using
the optimal solution ρ. The resulting output y(t)
is a “periodic smoothing spline”. In order to solve
(12) we can use Gaussian elimination.

Note that when x0 = 0 and non-periodic case,
there always exists a unique optimal solution ρ
(see, (Egerstedt and Martin, 2001), (Sun and
Martin, 2000)). Since G is positive definite it
follows that G + τD−1 is positive definite. Thus,
we have the optimal solution u as

u(t) = ((G+ τD−1)−1α)T g(t)

where g(t) = (gt1(t), · · · , gtN (t))T .

5. SIMULATION RESULTS

In this section, we present two examples. We
will see how our approach can be applied to the
reconstruction of the boundaries of a room.

First, assume that a dynamical control system
which corresponds to (1) is given by

A =
(
0 1
0 0

)
, b =

(
0
1

)
, c = (1 0) .

We now turn our attention to the laser range
finder, which observes the range along a laser
plane (see, Figs. 1, 2). It measures the distance
between the robot and the obstacles or the wall
of a room at each resolution degree for one scan.
That is, as a given data (2), let time ti be each
resolution degree and the output αi denote a
measurement distance, respectively.

What we want to do is to derive the distance either
through or close to measurement distance at each
resolution degree. We now consider a simple room
shape which the corners locate at (0, 0), (10, 0),
(10, 10), (15, 10), (15, 20), (0, 20) in the world
coordinates. Then assume that the mobile robot

Fig. 1. The mobile robot with a laser range finder.
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Fig. 2. The laser plane and the laser line.

is setting at some known position and detects the
distance data every 10 degrees for one laser scan
and that data is noisy. Further, for one run we put
the robot in a place where it can see the entire
room but for another run we place it so that it
cannot see one of the corners of the offset.

In Figs. 3 and 5, we have chosen two values of τ
to compare the trajectory of y(t). It follows from
these two figures that there is the tradeoff between
control power and fit. When there is missing
information as shown in Fig. 5, that is when
the robot cannot see the interior corner, we can
see that there is a significant Gibbs’ phenomena
appearing at the discontinuity points.

In order to reconstruct the wall of a room as shown
in Figs. 4 and 6 we calculate polar coordinates
given by (y(t) cos t, y(t) sin t) using the output
y(t) in Figs. 3 and 5, respectively. Then we can
see good reconstructions as shown in Figs. 4 and
6, respectively. From Fig. 6 we would see that
the Gibbs’ phenomena indicates to the robot that
it should move and take another set of readings.
That is, it may suggest that if the robot knows
that there is Gibbs’ phenomena present it should
move from the robot position in Fig. 6 to the next
position in Fig. 4. It is a significant open problem
of how the robot should autonomously detect the
Gibbs’ phenomena.
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Fig. 3. Periodic smoothing splines with different τ .
τi’s are 1e-06 (dash-dotted) and 1e-08 (solid).
Here λi’s = 0.5. The stars correspond to the
different αi at a given resolution ti.

−2 0 2 4 6 8 10 12 14 16
−5

0

5

10

15

20

25
Periodic smoothing splines on R2

x

y

Fig. 4. Reconstruction of periodic smoothing
splines by polar coordinates. The circle shows
the location of a mobile robot.
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Fig. 5. Periodic smoothing splines with different τ .
τi’s are 1e-06 (dash-dotted) and 1e-08 (solid).
Here λi’s = 0.5. The stars correspond to the
different αi at a given resolution ti.

6. CONCLUSIONS

In this paper, there are two important contribu-
tions. First, we introduced a new periodic smooth-
ing splines approach by optimizing over not only
the control but also over the initial data. Further,
we have developed a method for reconstructing
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Fig. 6. Reconstruction of periodic smoothing
splines by polar coordinates. The circle shows
the location of a mobile robot.

the boundaries of a closed room from noisy direc-
tional data obtained by the laser range finder by
using periodic smoothing splines.

We propose a available method to reconstruct the
boundaries of a room or the shape of objects as
an application of a range in the area of mobile
robotics.
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