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Abstract: This paper presents a fault-tolerant control scheme for a class of nonlinear
systems. A robust nominal controller is designed to ensure system stability and
tracking performance before a fault occurs. A monitoring module is used for on-
line fault detection and isolation. The fault detection scheme is designed based on
some stability criterion of the controlled plant, hence guaranteeing boundedness of
system states before fault detection in the presence of a fault. Then using the fault
information provided by the monitoring module, the controller is reconfigured after
fault detection and isolation, respectively, to compensate the effects of the fault.

1. INTRODUCTION

Fault tolerance can be achieved either passively by
the use of feedback control laws that are robust to
possible systems faults, or actively through a fault
diagnosis (fault detection and isolation (FDI))
and accommodation architecture. However, links
between fault diagnosis and fault-tolerant control
techniques are still lacking (Patton, 1997). The
complexity arises, for instance, from the signifi-
cant consequences that the fault detection time
has on the system stability (Mariton, 1989).

In (Zhang et al., 2001), the authors proposed a
unified framework for fault detection, isolation
and accommodation. The stability of the closed-
loop system is rigorously analyzed for each mode
of the controlled plant based on two assump-
tions: (1) the modeling uncertainty is uniformly
bounded; (2) if a fault occurs, its rate of growth
to infinity satisfies certain assumption such that
the fault is timely detected before some state
variable possibly grows unbounded. In this paper,
we present a new design procedure that extends
the results of (Zhang et al., 2001) by removing
these two assumptions.

The presented fault-tolerant control architecture
consists of two main modules: an on-line health
monitoring (FDI) module and a controller (fault

accommodation) module. Before the occurrence
of any faults, a nominal controller guarantees the
system stability and tracking performance. The
fault detection scheme is designed based on a
stability criterion of the controlled plant, such
that, if a fault occurs the system stability before
fault detection is ensured. Once a fault is detected,
the nominal controller is reconfigured to maintain
some basic stability properties in the presence of
the fault. Meanwhile, a bank of fault isolation
estimators (FIEs) are activated for the purpose
of fault isolation. If the fault is isolated, the
controller is reconfigured again to improve the
control performance. Due to space limitations,
some of the details of the analysis are omitted.

2. PROBLEM FORMULATION

Consider a class of single-input, single-output
nonlinear dynamical systems described by:
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where z 2 col (z1,---,zn,) is the state vector,

u € R is the control input, y € R is the output, ¢g



is a nonzero smooth function, and ¢;, n;, f; and
fi, for 1 < i < n, are generic smooth functions.
The system

Ty = w1+ ¢i(z), 1<i<n—-1
Yy =T,

where z; = col(zy,- -+, x;), represents the known
nominal model dynamics. The functions n;, f;
and f; represent the modeling uncertainty, the
fault time profile and unknown fault function,
respectively. The control objective is to force the
output y(t) to track a given reference signal y,(t).
It is assumed that y,.(t) and its first n derivatives
are known, piecewise continuous, and bounded.

The modeling uncertainty, represented by 7; in
(1), for i = 1,---,n, may include external distur-
bances as well as modeling errors. Throughout the
paper the following assumption will be used:

Assumption 1. The modeling uncertainty 7; is
an unknown nonlinear function of x, u, and t, but
bounded by some function 7;(z,u,t), i.e.,

|ni($7uat)| < ﬁi(wauat)v (2)

Vo € R", Vu € R™, Vt € R, where the bounding
function 7;(x,u,t) > 0 is known and continuous.

As to the fault affecting the nominal system
modes, from a qualitative viewpoint, the term
Bi(t — To) fi(x1,---,x;), 1 = 1,...,n, represents
the deviation in the system dynamics due to
the occurrence of a fault. More specifically, the
function 8; : ® — R represents the fault time
profile in the i-th state equation, with Ty being
the unknown fault occurrence time, and f; denotes
the nonlinear fault function affecting the i-th state
equation. In this work, we consider faults with
time profiles modeled by:

0 if t<Tp

5i(t—T0):{1—e_°‘i(t_T°) it t>1, O

where the scalar «; > 0 denotes the unknown
fault evolution rate. Small values of «; char-
acterize slowly developing faults, also known as
incipient faults. For large values of «;, the time
profile 3; approaches a step function, which mod-
els abrupt faults.

The fault—tolerant controller proposed in the
paper will make explicit use of any informa-

tion available about the occurred fault f 2
[fi, f2, ==+, fa]T,i-e., the detection and isolation
of the fault provided by the monitoring module.
We assume that there are N types of possible
faults in the fault class; specifically, f(z) belongs
to a finite set of functions given by

FE{f' @), .. M)} (4)

Each fault function f*(z),s=1,---
by

£ 20D g7 (20), (03)T g1, w2), -+, (83) T g3 (@)
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where 67,7 =1,---,n, is an unknown parameter
vector assumed to belong to a known compact set
O3 (e, 07 € O3 C R%) and gf: R — R is
a known smooth vector field. This representation
characterizes a class of nonlinear faults where the
nonlinear vector field g7 represents the functional
structure of the s-th fault affecting the i-th state
equation, while the unknown parameter vector
07 characterizes the “magnitude” of the fault in
the ¢-th state equation. The dimension ¢j of each
parameter vector §; is determined by both the
type of fault and the specific state component
considered.

3. FAULT-TOLERANT CONTROL
ARCHITECTURE

Now, we present the architecture of the fault-
tolerant control scheme. A block diagram repre-
sentation of the overall design in shown in Fig.1.

Controller Module
i u(t X(t)
yy(); | Reconfigurable (t) Nonlinear Plant
— Controller | |
IAccommodation Fault l
Scheme Fault Detection | detected | Fault Isolation
Decision Scheme Decision Scheme|

Fault
Monitoring Module isolated|

Fig. 1. Architecture of the fault-tolerant control
scheme.

The monitoring (fault diagnosis) module shown in
the above figure consists of a fault detection and
a fault isolation scheme. Under normal operating
conditions, the fault detection scheme is the only
one operating by monitoring the system for the
occurrence of any faults. If a fault occurs, then
once it is detected, the fault isolation scheme is
activated to determine the particular type of fault
that has occurred. Conditions under which a fault
can be detected and isolated have been derived an-
alytically in previous work by the authors (Zhang
et al., 2000). The fault isolation scheme consists
of a bank of N nonlinear adaptive estimators,
with each of them corresponding to one of the
possible types of nonlinear faults in the fault class
F described by (4). More details of the monitoring
module are given later on in the paper.

Let us define three important time—instants: Tj
is the fault occurrence time; T; > T} is the fault
detection time; and Tiso1 > Ty is the fault isolation



time. Then, the structure of the fault-tolerant
controller takes on the following general form:

uo(z,ya,t), for t<Ty

UD('/I;:ydyt) ) for Td S t < T‘isol (5)
S
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u(t) =

where y; € R" denotes a reference vector to be
tracked by the controlled system state vector. The
control laws wg,up,uj are nonlinear dynamic
functions to be designed according to the following
objectives:

(1) Under normal operating conditions (i.e., for
0 <t < Tp), a nominal controller ug is de-
signed to guarantee the system stability and ro-
bust tracking performance in the presence of the
modeling uncertainty 7.

(2) When a fault occurs at time Ty, the nominal
controller uy should guarantee the boundedness
of all the system signals until the fault is detected,
ie, for To <t <Ty.

(3) After fault detection (i.e., for Ty <t < Tisor )
the nominal controller is reconfigured to compen-
sate the effect of the (yet unknown) fault; that is,
the controller up is designed in such a way to
exploit the information that a fault occurred to
recover some basic control performance.

(4) After fault isolation (i.e., for t > Tiso1 ) the
controller is reconfigured again. The function uj,
where s = 1,---, N, is designed using the infor-
mation of the fault type that has been isolated so
as to improve the control performances.

In the following sections, the general architecture
shown in Fig. 1 will be specified by detailing
the monitoring module and the reconfigurable
controller.

4. NOMINAL CONTROLLER AND FAULT
DETECTION SCHEME

In this section, we investigate the design of the
nominal controller, the fault detection scheme,
and the system stability issue before a fault is
detected if a fault occurs (i.e., for t € [0,7y)).
For the sake of compactness of notation, we let
_(5) A ;

g = col (yn, i)yt

4.1 Nominal controller design and system stability
before fault occurrence.

Let us first consider the system behavior in the
absence of any faults (i.e., for t € [0,Tp)). The
following design procedure is based on the back-
stepping methodology (Krstic et al., 1995) with
a bounding control scheme to account for the

. . A
modeling uncertainty. A new state vector z =
col(z1,...,2,) is defined recursively by the fol-
lowing coordinate transformation:

zi = 1 — a1 (Timr,507Y) — yl=Y | (6)

where i = 1,---,n and
Qg = 0
a; = —c1z1—¢1+;m
1—
8&'_1
Qi = —cizi — zic1 — Gi + Y ——(Thi1 + Gr)
k=1

M+ opi(, Yy,

+Z 8az 1

for 2 <i<n,

where, for 1 < i < n, ¢; are suitable design
constants, and p; are smooth functions to be
defined later on. According to the system model
(1) and the coordinate transformation described
by (6), before the occurrence of any faults, the
time-derivative of the new state variable z; can
be expressed as follows:

2=Ts+P1+M —Yr = 22tar+ o1 +m
=22—C121+Mm +p1- (7)

Similarly, for 2 < ¢ < n — 1, the time-derivative
of z; can be recursively obtained as follows:
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Finally, for i = n, we have
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By choosing the nominal control law as

uo(t) = [an + y(”) ] 9)

1
do(z)

we obtain

aOé'nfl
2n = —CpZp — Zp—1+Nn — + pn 10
L+ g;%km pu (10)

Consider a Lyapunov function of the form

1 n
zizyﬁ (11)
=1



After some algebraic manipulation, the time-
derivative of V' is given by

n n —
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Now, we consider the design of the bounding
control functions p;. In the sequel, the following
property of the hyperbolic tangent function is
used: for any € > 0 and for any ¢ € R,

0 <lgl—qtanh (£) < ke, (12)

where k is a constant that satisfies k = e~(*+1);
i.e., k~0.2785. By choosing

Oai—y

G =1

k=1 k
= —(; tanh <ZZ<Z> ,
and using the property of the hyperbolic tangent

function given by (12), the time—derivative of the
Lyapunov function satisfies

Nk

(13)

V(1) =26V (1) + z el — 2 (2]

<=2cV(t) + nke. (14)

Now, if we let & 2 "—k; > 0, then by (14) we have

2

0 < V(t) < k+[V(0) — K] exp(—2ct) . (15)
Therefore, z(t) and z(t) are uniformly bounded.
Furthermore, using (11) and (15), we obtain that
given any € > +/2k, there exists some time T,
such that for all ¢t > T the output y = x, satisfies

ly(t) =y, ()] < €

Hence, before fault occurrence, the stability and
tracking property of the nominal controller given
by (9) is guaranteed.

4.2 Fault detection scheme and system stability
before fault detection.

Let us now suppose that a fault occurs at some
time Ty. Clearly, the occurrence of a fault may
affect the system stability. As discussed in Sec-
tion 3, boundedness of all signals should be main-
tained until the fault is detected. This property

is guaranteed here by the design of a fault de-
tection scheme using some stability criterion of
the controlled system. Specifically, based on (15),
the following decision scheme for fault detection
is proposed:

Fault detection decision scheme: The decision
for the occurrence of a fault (detection) is made
when the Lyapunov function V (t) exceeds a corre-
sponding bound V (t), i.e., V(t) > V(t), where

V() 2 k+[V(0) — ] exp(—2ct) .

More specifically, the fault detection time Ty is
defined as

Ty 2 inf{t > Tp:V(t) > V(®)}. (16)
Intuitively, the nominal controller described by (9)
is designed to be robust with respect to modeling
uncertainties that satisfy condition (2). Based on
the above fault detection scheme, in the pres-
ence of a fault, when the overall effects of the
unknown fault function and modeling uncertainty
grow beyond the stabilizing ability of the nominal
controller (i.e., inequality (15) is violated), a fault
alarm is generated. Clearly, the system stability
before fault detection is ensured by the proposed
nominal control scheme.

Based on the design of the nominal controller and
the fault detection scheme presented in Section 4.1
and Section 4.2, respectively, the stability prop-
erty of the controlled plant before fault detection
can be summarized as follows:

Theorem 1. Before the detection of any faults
(i.e., for t € [0,Tyq)), the nominal control law
(9) with bounding control design (13) and fault
detection scheme (16) guarantee that:

(1) all the signals are uniformly bounded, i.e., z(t)
and z(t) are bounded for all t € [0, Ty);

(2) given any € > +/2k, there exists T(€) such
that |y(t) — y.(t)] < €, for allt > T(E).

5. FAULT ACCOMMODATION DESIGN

5.1 Basic controller reconfiguration: accommodation
before fault isolation.

After a fault occurs, the control performance may
degrade rapidly, since the nominal controller (9) is
no longer tuned to stabilize the system in the pres-
ence of a fault. Therefore, after fault detection, the
nominal controller has to be reconfigured to help
retain some of the basic stability properties of the
system.

Before the fault is isolated, no information about
the fault function is available. On-line approx-
imators such as neural network models can be
used to estimate the unknown fault function g; f;.



By denoting f,(f,,él) as the neural network ap-
proximation model with adjustable weights 6;, the
system model (1) can be rewritten as follows:

Ty = Tip1 + ¢z(£§ ) + fi(Zi,07) + Bidi(:) + ms
(B = Dfile 8, 1<i<n-1,
En = Go(2)u+ ¢n(z) + fn(2,0) + Bndn(z)
+nn+(ﬂn_ )f (.I‘ )

A A .
where 51(571) = f,(.’fl) - fz(i:l,éj) is the network
approximation error for the i-th network, and 67
is the optimal weight vector, given by

o7 2 arg inf { sup |fi(%;) —fi(fi,éiﬂ} .
xieéﬁi

éi € RPi

For each network we make the following assump-
tion on the network approximation error:

Assumption 2. For eachi = 1, ---,n,
0:(Z:)| < is si6(Z4) (18)

where ;s > 0 are unknown parameters and S;s :
R — RT are known smooth bounding functions.

The details of the design of the fault-tolerant
controller up(t) defined in (5) has been considered
in previous work (Zhang et al., 2001) (available
on-line). Due to space limitations, no more de-
scription is given here.

The fault-tolerant controller up(t) guarantees the
system stability and asymptotic tracking perfor-
mance to a neighborhood of zero after the fault is
detected. Since no further information about the
fault is available at this stage, the neural networks
are used to approximate the unknown fault model
and Assumption 2 provides a bounding function
on the network approximation error to facilitate
the design of the fault-tolerant control law up(t).
However, in some applications, this critical as-
sumption (18) may result in conservative bounds
and/or possibly limiting requirements, which mo-
tivates the advanced controller reconfiguration
procedure described in the next section.

5.2 Advanced controller reconfiguration: accommod-

ation after fault isolation.

After a fault is detected, the fault isolation scheme
is activated. The fault isolation module consists of
a bank of N nonlinear adaptive estimators, where
N is the number of possible faults in the fault class
F. Specifically, the following nonlinear adaptive
estimators are used as isolation estimators:

s = —A(QATS - :1?) + QZS(:IT,’U,) + fs(x’u’és)
s [(éis)'l'gf(x’u)’

S

i = Po; {Iig] (z,u)€i}

e Shy B
1

@) gy w)] (19

where, for s = 1,---,N and i = 1,---,n, éf is
the estimate of the fault parameter vector in the
i-th state equation with the projection operator P
restricting 67 to the corresponding known set ©7,

A . . )
€(t) = xz;(t) — 25(t) is the i-th component of the
state estimation error vector, and A and I'{ > 0

are design matrices.

Fault isolation decision scheme: If, for each
r€{l,---, N}\{s}, there exist some timet" > Ty
and some i € {1,---,n}, such that at least one
component of the state estimation error vector
exceeds its threshold uf ("), i.e., |l (t")| > ui(t"),
then the occurrence of fault s is concluded. The
fault isolation time is defined as
T3 2 max{t", r € {1,---

1

NH\{s}} . (20)

Clearly, a basic role in the above fault isolation
scheme is played by the adaptive thresholds pf(¢).
The design of threshold pf(¢) and some properties
of the fault isolation scheme, such as fault isolabil-
ity condition and fault isolation time, have been
rigorously investigated in (Zhang et al., 2000).
Due to space limitations, no details are given here.

Let us now assume that the isolation procedure
provides the information that fault s has been
isolated at some time T;% ;. Then, using the fault

model described by (4), the system model (1) can
be rewritten as follows:

& = w1+ (Bi(t — To) — 1)(6) g5 (z;)
+oi+(0)) gi (@) +mi, 1<i<n-—1

dn = do(x)u+ (Bu(t —To) — 1)(05) Tgi(z) (21
+ ¢+ (05) g5 (x) +
Yy =1,

where, as described in Section 2, the vector field
7 characterizes the functional structure of the

fault in the i-th state equation, and 6] denote the

magnitude of the fault in that state equation.

Comparing (21) with the system model (17) be-
fore fault isolation, the network approximation
error §;(Z;) no longer exists. Consequently, the
critical Assumption 2 can be removed for the
design of fault-tolerant controller uj(t) used after
fault isolation. Again, the details for designing the
stable adaptive control law u$(t) are omitted here
due to space limitations and the reader is referred
to (Zhang et al., 2001) for more details.

6. SIMULATION RESULTS

In this section, we consider a simulation example
of a single-link robot whose motion dynamics
(Kim et al., 1997) is given by

L1 1 . .

i =7 [U(t) = 5mglsin(g)| + n(g,4,?)
+ B(t — To) f(q,4)

y=q,



where ¢ is the link position angle, u is the input
torque, M is the moment of inertia, g is the
acceleration due to gravity, m and [ are the mass
and length of the link, 1, f and [ represent
the modeling uncertainty and fault function, and
the fault time profile, respectively. Moreover, the
desired output is y, = sin2t, fort > 0. Letting
x1 = q and x5 = ¢, the state-space representation
of the system is

iy = %(u(t) - %mgl sin(x1)) + B(t — To) f(x) + 1

The class of faults is assumed to be as follows:
(1) A fault which results in a reduction in the
mass of the link. Then the fault function takes
on the form of f!' = 6'g'(z), where g'(z) =
—5-mglsin(z;) and 6* € [—1, 0] represents the
percentage of change in the mass.

(2) A fault that occurs due to a tangle of com-
plex factors; the fault is assumed to be a non-
linear change (in the robotic system dynamics)
described by f2 = 62¢%(z), where g*(z) = =122
and 62 € [-1,0].

Without loss of generality, in the following we

consider a fault of type 1 with ' = —0.75 and
fault time profile f = 1—e92(t=10) j e the fault
evolution rate is @« = 0.2 and the fault occur-

rence time is Tp = 10s. Using the methodology
described in Section 4.2 and Section 5.2, the mon-
itoring module consists of a detection scheme and
a bank of two fault isolation estimators (FIEs).
The filter pole is chosen as —A = —1.

The nominal controller is given by (9). For the
basic controller reconfiguration (for the sake of
simplicity), the bound on the network approxima-
tion error 6(z) described in Assumption 3 is taken
as [6(z)| < s, where 15 is an unknown constant
(i.e., ss is selected as a unit constant function).
The design parameters are selected as follows: the
controller gains ¢; = ¢ = 0.3, ¢ = 0.2.

As we can see from Fig. 2, after the fault occurs at
t = 10s, it is detected at approximately ¢ = 12s.
At that time, the nominal controller is reconfig-
ured, and two isolation estimators are activated
to isolate the fault. The decision of occurrence
of fault 1 can be made at ¢ = 15.5s. Then the
second controller reconfiguration is triggered. The
actual output with fault diagnosis and accommo-
dation (FDA) and the desired output are shown
in Fig. 2. For comparison purposes, the system
output without FDA is also included.
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