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Abstract.  An adaptive neural network-based predictive strategy is applied to a pilot 
multivariable chemical reactor. The first stage of the project, simulation study, has been 
investigated and is presented in this paper, together with the description of the adaptive 
network. A pseudo-linear radial basis function (PLRBF) network is developed to model 
the real process and its weights are on-line updated using a recursive orthogonal least 
squares (ROLS) algorithm. The effectiveness of the adaptive control in improving the 
closed-loop performance has been demonstrated for process time-varying dynamics and 
model-process mismatch.  
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1.  INTRODUCTION 
 
Applications of neural networks in chemical process 
modelling and model predictive control (MPC) have 
been investigated for single-input, single-output 
systems (Lightbody and Irwin, 1997; Doherty et al., 
1997). A neural network modelling and MPC control 
technique for multivariable process was investigated 
in our previous research and described in (Yu et al. 
1999), where three variables including temperature, 
pH and dissolved oxygen were controlled for set-
point tracking in real time. In the on-line control 
practice, however, it was realised that the dissolved 
oxygen in the reaction had time-varying dynamics 
which significantly degraded the on-line performance 
when a fixed neural network model was used. This is 
the motivation behind this research to develop an 
adaptive neural model to cope with the time-varying 
dynamics and also the model-process mismatch. 
 
Different adaptive neural networks have been 
developed in recent years. For example, Lu et al. 
(1997), Karayiannis and Mi (1997), Luo and Billings 
(1998) proposed different adaptation algorithms for 
RBF network structure to recursively train the 
network model in off-line mode or to model a time 
varying system in on-line mode. Liu et al. (1999) 
developed an adaptive RBF network and Yang and 
Linkens (1994) developed an adaptive multi-layer 
perceptron (MLP) network as the adaptive controllers 
for non-linear system control. Pereira et al. (2000) 
applied adaptive RBF network model in the internal 
model control strategy to control an experimental 

process, and compared the performance with that 
achieved using a linear pole-placement controller. 
 
A weight and centre adapted RBF network has been 
developed by the authors (Yu and Gomm, 2001) 
based on the centre pruning algorithm (Gomm and 
Yu, 2000) and ROLS training algorithm (Yu et al., 
1997). In this paper a pseudo-linear RBF network is 
on-line trained using ROLS as the process model and 
is used in MPC of a laboratory-scaled chemical 
reactor. The reactor exhibits characteristics typical of 
many industrial processes, due to its non- linearity, 
coupling effects among the controlled variables and a 
long time-delay in heat exchange. The work in the 
first stage, simulation study, is described in the paper. 
It will be followed by the work in the second stage, 
real time application to the reactor and the 
application of the both weight and centre adapted 
RBF network model. 
 
The structure of the pseudo-linear RBF is described 
in the paper. Then, a brief review of the on-line 
operation of the ROLS training algorithm follows. In 
the simulation part, an MLP network is trained using 
the Levenberg-Marquardt algorithm and used as the 
simulated process, due to the lack of the process 
mathematical model. Then a change in process 
dynamics is simulated during on-line control to 
demonstrate the effectiveness of the adaptive model 
in coping with time varying dynamics. This 
performance is compared with that by the same MPC 
with the same but fixed RBF model. 
 

2. PROCESS DESCRIPTION 
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The reactor used in this research is a pilot system 
established in the laboratory to generally represent 
the dynamic behaviour of real chemical processes in 
industry. The schematic of the chemical reactor is 
shown in Fig.1. It consists of a continuously stirred 
tank (15 litres) to which the chemical solutions, 

OHNH4 , COOHCH3  and 32SONa , and air are 
added. The liquid level in the tank is maintained at a 
pre-specified constant level by an outflow pump 
system. The concentrations and flow rates of 
solutions, COOHCH3  and 32SONa , are constant 
except for some manual changes to mimic process 
disturbances. The concentration of OHNH4  is 
constant but the flow rate is adjustable by a servo-
pump to regulate the pH value in the tank. The air-
flow rate is also adjustable by a mass- flow meter 
connected to a compressing air network to regulate 
the percentage of the dissolved oxygen (pO2) in the 
liquid in the tank. The tank is also equipped with an 
electric heating system to adjust the liquid 
temperature. The liquid in the tank is stirred 
continuously to make sure the pH, the dissolved 
oxygen and the temperature are consistent throughout 
the tank. All three variables are measured and 
displayed. A personal computer with analogue I/O is 
connected to the process to sample the measurements 
and issue the control outputs. 
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Fig.1 The chemical reactor process 
 
With the three inputs, heating power, flow rate of 
ammonium hydroxide and flow rate of air, and the 
three outputs, liquid temperature, pH and percentage 
of dissolved oxygen, the process constitutes a MIMO, 
non-linear dynamic system. It has been shown in the 
experiments that the coupling between variables is 
very significant. The rate of absorption of oxygen 
into the liquid and the reaction of the sodium 
sulphite, for example, significantly depend on the 
liquid temperature. The process also suffers from 
many external disturbances, apart from those 
introduced manually, such as changes in the room 
temperature, perturbations in the concentrations of 
the inflow chemical solutions and air pressure in the 
compressing air network, different concentrations of 
H +  and OH −  ions in the liquid at different times. In 

addition, the response times for the three variables 
are significantly different. The rise time for the 
temperature is very long due to the available heating 
power whereas the dissolved oxygen is quite short. 
All these effects cause the process to be non-linear in 
both dynamic and static behaviour, time varying and 
uncertain in parameters, multivariable with 
significant coupling, complex without a known 
mathematical model, suffering from unpredictable 
large disturbances. 
 
Process inputs and outputs are chosen as  
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where Q , bf  and af  denote the heating power, the 
flow rate of the base and the flow rate of air 
respectively. 
 
One possibility for choosing a sample time is based 
on examining the hold-up time (volume/total flow 
rate) of the process, which is approximately 10 
minutes for this process. A suitable sample time 
could then be selected as, say, one minute if only the 
dynamics of the fluid flow rates are considered. 
However, since the dissolved oxygen responds to 
changes in the air flow rate quickly, especially at 
high temperature, therefore, the rise times for 
different variables should also be considered. From 
process step responses, approximate rise times to 
reach steady state are recognised as 45 minutes for 
temperature, 25 minutes for pH, 5 minutes for pO2  

when temperature is 300C  and 2 minutes for pO2  at 

500C . Thus, a suitable sample interval for all 
variables was selected to be 10 seconds. 
 

3.  NEURAL NETWORK MODELS 
 
The process is represented by the multivariable 
NARX model of the following form, 
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are the process output, input and noise respectively, p 
and m are the number of outputs and inputs 
respectively, ny  and nu  are the maximum lags in the 

outputs and inputs respectively, d is the maximum 
time delay in the inputs; and )(∗f  is a vector-valued, 
non-linear function. When neural networks are used 
to model the process, the measurements of the 
process at different sample times can be taken as the 



  

input of the network, while the network implements 
the non-linear transformation, )(∗f  in (2). 
 
A PLRBF network is proposed in this work by 
augmenting the nominal RBF with the network input 
directly used as part of the regression signals. The 
PLRBF structure and operation are presented by the 
following equations. 
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where n
icx ℜ∈, with uy mnpnn +=  are the input 

vector to the network and the centre vector in the 

hidden layer, hnℜ∈φ  is the hidden layer output 

vector, hnpW ×ℜ∈  is the output layer weight matrix 

and py ℜ∈ˆ  is the network output, or the prediction 
of the process output when the network is used as the 
process model. The network input vector is chosen as 
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according to (2). It is noted that such structured 
PLRBF is a combination of a linear part and a non-
linear part in one model. This reduces the task of the 
hidden layer nodes to modelling only additional non-
linear effects to a linear model throughout the whole 
operating region. Simulation studies have shown that 
much less hidden layer nodes are needed than a 
standard RBF to model a process to the same 
accuracy.  
 
The weight matrix of the PLRBF is trained initially 
and then on-line updated using the ROLS algorithm. 
For the N input-output training data, it is formed 
according to (5) 

EWEYY +Φ=+= ˆ            (6) 

where pNY ×ℜ∈  is the desired output matrix, 
pNY ×ℜ∈ˆ  is the neural network output matrix, 

hnN×ℜ∈Φ  is the hidden layer output matrix, 
pNE ×ℜ∈  is the error matrix. )(kW  can be solved 

from 
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where R(k) is from the QR decomposition of Φ .  
Calculation of W can be achieved on-line using the 
following transformation (Bobrow and Murray, 
1993), 
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The procedure of the ROLS algorithm is therefore the 
following: at stage t, calculate )(tR  and )(tY

)
 

according to (8), then solve )(kW  in (11). Initial 

values for )(kR  and )(kY
)

 can be assigned as 

IR α=)0(  and 0)0( =Y
)

, where α  is a small positive 
number. 
 
In this study, a PLRBF is trained as the process 
model and a MLP is trained as the process simulation 
for on-line control evaluation. The process time-delay 
and input-output orders were selected in the previous 
work using a linearized selection method (Yu et al., 
2000). The network input vector is chosen 
accordingly as, 
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T
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where d = 22 is the time-delay from the heating 
power to the liquid temperature.  
 
A training data set with 1800 samples is collected 
from the process. It is found that the data displays a 
time variant feature with the first 200 samples of 
dissolved oxygen behaving much different from the 
rest of the samples. It is thus decided the PLRBF 
model is trained using the last 1600 samples, while 
the MLP network is trained using the whole data set 
to present the process dynamics. Worth mentioning is 
that all data is scaled to the region, 0~1 in training 
and prediction in on-line control simulation. The 
trained PLRBF model is used as a parallel model to 
predict the process output used in the training, and 
the prediction is displayed in Fig.2. 
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Fig.2a Process and parallel model output for 
temperature 
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Fig.2b Process and parallel model output for pH 
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Fig.2c Process and parallel model output for 

dissolved oxygen 
 
It can be observed in Figs 2a-2c that the prediction of 
the PLRBF model in the parallel format is quite 
accurate for temperature and pH, and is generally 
well for dissolved oxygen except for the first 200 
samples. This is because the first 200 samples have a 
quite different dynamic behaviour due to the process 
time variant dynamics and are not used to train this 
model. The MLP model trained for use as a simulated 
process is also accurate but is not displayed here due 
to the limited space. As the MLP model is trained by 
a training set including the first 200 samples of 
dissolved oxygen, the two models are actually have a 
mismatch that will be used to evaluate the developed 
adaptive control. 
 

4.  MODEL PREDICTIVE CONTROL 
 
Model predictive control using a neural network 
model for single-input, single-output systems has 
been studied by a few researchers and is outlined in 
by Hunt et al. (1992). For multivariable systems the 
neural network MPC strategy used to control this 
reactor was described in the previous research (Yu et 
al., 1999) using three fixed MLP models. The same 
strategy is used here with an adaptive model and is 
shown in Fig.3. In this approach, a neural network 
model is used to predict the future process response 
over the specified horizon. The predictions are passed 
to a numerical optimisation routine which attempts to 
minimise a specified cost function (10) in the 
calculation of a suitable control signal at each sample 
instant. 
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Fig.3 Multivariable MPC control strategy 
 

The objective function used in the optimisation is  
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N1, N2 are vectors specifying the prediction horizon, 
with the ith element specifying the parameter for the 
corresponding output, Nu is the control horizon 
vector, with the jth element specifying the parameter 
for the corresponding input. The second summation 
term in the cost function (10) is designed to smooth 
the control signal. W(i)

y and W(j)
u are the weighting 

matrices for the ith output tracking error and jth input 
increment, respectively. ξ  is the control weighting 
vector, with the jth element applied to the jth input. 
M is the modified set-point to introduce a feedback in 
order to compensate the system steady-state error and 
against disturbance effects. The filtered model 
prediction error in Fig.3 is also used to compensate 
the model outputs in the MPC scheme to correct the 
future predictions. This is to modify the model 
outputs in (5) by adding the corresponding filtered 
error to the right-hand side of the equations. 
 
Before on-line evaluation, the control system is 
simulated using the developed MLP model as the 
process. In this way, the system can be easily 
operated repeatedly to find a set of suitable control 
parameters, i.e. values for the vectors ξ,,, 21 uNNN . 
A number of simulations have been tried and suitable 
control parameters for set point tracking are chosen 

as, [ ]TN 62221 = , [ ]TNN 15151512 += , 

[ ]TuN 111= , [ ]T05.005.005.0=ξ , where the 
elements of N1 and N2 relate to the temperature (1), 
pH (2) and dissolved oxygen (3) respectively, and the 
elements of Nu and ξ relate to the heating power (1), 
flow-rate of base (2) and flow-rate of air (3) 
respectively. Here the value of N1(1) for the 
temperature must equal to or be greater than the time-
delay 22=d .  N1(2)=2 and N1(3)=6 are chosen to 
consider the future output tracking and to achieve a 
smooth control. The choice of N2 includes an equal 
number of future predictions of each output in the 
cost function which, with these settings of N1 and N2, 
is 15. If the elements of Nu are greater than 1, the 
number of variables to be optimised will not be 
minimum. Since the optimisation is multi-
dimensional, this increases the difficulty and 
computational expense required to solve the 
optimisation. Hence, Nu=1 only is considered in this  
work. Only a small damping on the control inputs 
(ξ=0.01) was found necessary with these relatively 
long prediction horizon settings since the control 
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inputs were not observed to exhibit undue 
oscillations. Sequential quadratic programming is 
used to solve the multivariable optimisation problem 
of minimising J with respect to u(t), and to produce a 
solution constrained within the process input 
operating ranges (0~100% of the scaled data).  
 
The on-line adaptation of the model is performed by 
conducting (8) using the Givens rotation to the 
augmented matrix, then solve weight matrix W(k) in 
(7) by back substitution. A forgetting factor 98.0=λ  
is found appropriate. To prevent the model losing 
useful past information in the period when the system 
dynamics does not change significantly, the 
following condition is applied to determine whether 
the weight is adapted at this sample instant. 
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where L is the length of the window in which the 
mean modelling error norm is observed, δ  is a pre-
specified threshold which is given corresponding to 
the model accuracy. In this research, L=5 and 
δ =0.005 are used. 
 
In order to evaluate the performance of the adaptive 
model based MPC, a dynamics change of the process 
is simulated at sample time instant k=50 by changing 
some weights of the MLP model with 10%. This 
simulated model with the change is controlled twice, 
once by the adaptive model and once by the same 
model without adaptation, with all other control 
parameters being the same. The system response 
together with associated control variable for three 
variables are displayed in Fig.4. The response of the 
simulated process for the model without adaptation is 
displayed in Fig.5 for comparison. Due to the limited 
space only the dissolved oxygen is displayed.  
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Fig.4 Simulated response and control with adaptive 
model 
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Fig.5 Simulated dissolved oxygen with fixed model  
 
It is observed in Fig.4 that all three variables follow 
the set-point with quick response (with bounded 
control) and a very small overshoot even for the 
temperature which has a long time-delay. This is due 
to the multi-step ahead prediction considered in the 
objective function. There is no steady-state error to 
appear. Compared to the response of the dissolved 
oxygen with the adaptive model, the response 
produced with fixed model has a much worse 
performance. This demonstrates the effectiveness of 
the model adaptation to trace process time varying 
dynamics. It can also be seen that when one control 



  

variable has an abrupt change to respond set-point 
change, the change is in fact a disturbance to the 
other outputs. Since the multivariable optimisation 
considers squared tracking errors of all variables, 
these disturbances are efficiently rejected by 
determining changes in the other control variables for 
compensation. 
 
The performance of the three variables is also 
compared numerically with measurement of the 
mean-squared-error of set-point tracking and on-line 
model prediction and displayed in Table 1. 

 
Table 1 Comparison of control performance 

 
The MSEs in the table show that the on-line 
modelling error is greatly reduced by on-line training. 
The tracking performance is also improved in the 
adaptive model case. 
 

5.  CONCLUSIONS 
 
Model predictive control based on an adaptive 
PLRBF model is applied to a laboratory-scaled three-
input three-output chemical reactor. The PLRBF uses 
much less hidden layer nodes while predicts much 
more accurately than a standard RBF network when 
they are used to model multivariable real processes. 
On-line update of RBF weights using the ROLS and 
implemented by applying the Givens rotation is 
numerically stable and computing efficiently. 
Simulation results show that the adaptive model 
significantly reduces the instant modelling error for a 
time variant process or process-model mismatch, and 
consequently improves tracking error of the control 
system. 
 
The work presented in this paper is the first stage of 
the project. The further work will focus on using a 
PLRBF model with its number of centres also 
adapted, and real-time evaluation on the process.  
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