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Abstract. We propose a new model for robot manipulators with rigid links and flexi-
ble joints. Our model is expressed in Cartesian dependent coordinates which represent
the positions, orientations and velocities of the links and the rotors, as opposed to
independent generalized coordinates in which classical “Lagrangian” models are de-
fined. The model consists of a set of dynamics equations and holonomic constraints.
We believe this model may facilitate the task of observer-design based tracking con-
trol.
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1. INTRODUCTION

In this paper we propose a new dynamic-kinematic
model for robot manipulators with rigid links and
flexible joints. Our motivation to develop this model
alternative to the classical ‘Lagrangian’ models pro-
posed in (Spong 1987, Burkov and Zaremba 1987)
and presented in (Marino and Nicosia 1985, Nicosia
and Tomei 1990) stems from control applications. In
particular time-varying trajectory tracking control
problems. The main feature of our model is that it
is linear in the velocities hence it lends itself to an
easier definition of admissible reference trajectories
and for output feedback control, it makes the ob-
server design simpler. This is because one can over-
come the technical difficulties of the quadratic (in
the generalized velocities) terms due to the Coriolis
and centrifugal forces.

The price paid for this apparent “simplicity” is that
the obtained model is a non minimal realization
of the dynamics and kinematics. As a matter of
fact the model is represented using Cartesian con-
strained coordinates instead of generalized ones. Hence
its state is neither controllable nor observable. Yet,
there exists an observable and controllable output
which is a function of the state hence, output con-
trollers can be designed and moreover, the control-
lable observable output is that of physical interest
(the generalized coordinates). The physical inter-
pretation of this uncontrollability and unobservabil-

ity becomes evident if we remark that uncontrol-
lable and unobservable state is the set of Carte-
sian velocities, positions and orientations of each
link independently, expressed in the base frame. It
is obvious that their movement is mechanically con-
strained since the links are hinged to one another
by the articulations. Opposed to this, the control-
lable and observable output corresponds to the set
of generalized positions and velocities, i.e., the ar-
ticulations’ coordinates.

The derivation of the model follows an energy-based
approach as it is usually done for the Lagrangian
models except that we consider the kinetic energy
as a function of the Cartesian instead of the gen-
eralized velocities. This development follows closely
that of robot dynamics textbooks (see e.g. (Spong
and Vidyasagar 1989, Sciavicco and Siciliano 1996)).
In this paper we will use the notations of the second
reference. A detailed development regarding the ge-
ometry of the robot is omitted here due to lack of
space and is presented in (Melhem and Loŕıa 2001).
The model we propose resembles to some extent,
that of (Jain and Rodriguez 1995) in that the re-
sulting inertia matrix is block diagonal and, in some
cases, diagonal. However, as pointed out before, our
model is expressed in Cartesian dependent coordi-
nates and therefore it is of augmented dimension
with respect to any model defined upon generalized
coordinates.

Our work has been motivated mainly by solving
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the problem of position feedback control hence, we
seeked at obtaining a model linear in the unmea-
surable velocities. See (Loŕıa and Panteley 1999, Be-
sançon et al. 1998, Spong 1992). The common point
to all these models is that the change of coordinates
seeked for is globally invertible, hence, one basically
looks for a map which transforms coordinates from
Rn into Rn. In contrast to this, the dimension of
the Cartesian coordinates of our model is 12n if
one considers that the angular velocities of the ro-
tors are due only to their own rotation while it is
15n if one considers as well the contributions of the
angular velocities of the links to those of the ro-
tors’. The mapping, which is unique in one sense
and has multiple solutions in the other, constitutes
a kinemtics equation. Thus, while a globally invert-
ible mapping may almost never be obtained, our
kinematic model can be easily computed following
the Denavit-Hartenberg convention.

In the next section we derive our dynamic and kine-
matic models based on an energetical approach. In
section 2.2 we present some important properties
of the kinematics model. We provide a discussion
related to the Lagrangian model in Section 3 We
conclude with some remarks in Section 4.

2. A “NEW” DYNAMIC MODEL

We will consider only manipulators driven by DC
motors, thru flexible transmissions. We consider the
manipulator as an open kinematic chain of n + 1
rigid bodies, i.e., the base (0-th link ) plus n other
links, interconnected by n flexible articulations. The
i-th motor is supposed to be placed at the (i−1)-th
link.

The configuration of such a chain (or manipulator)
can be fully described by a set of 2n generalized co-
ordinates q := col[q`, qm] where q` := col[q`1 , · · · , q`n

],
qm := col[qm1 , · · · , qmn ] and

qmi
= 1/kri

θi i = 1, · · · , n (1)

where qmi
denotes the i-th articulation variable, θi

the corresponding angular position of the i-th rotor,
kri the reduction ratio and q`i denotes the i-th link
position.

It is assumed as usual that transmissions are elastic
and the elasticity can be modeled, in the space of the
q` and qm coordinates, by a linear force according
to Hooke’s law. The base link variables are indexed
by 0 and the elasticity force magnitude at the i-th
joint is denoted by ki > 0.

All the results of this paper are developed upon the
following basic assumption which is commonly used
in the literature.

Assumption 1. The rotors of the actuators are mod-
eled as uniform solid bodies having their centers

of mass on their axes of rotation.

As for many physical systems, the approach we fol-
low to derive the model is based on the definitions
of its kinetic and potential energy functions. This is
done in the following subsections. The development
is similar to that for the classical Lagrangian models
except that we will use Cartesian coordinates.

2.1 Derivation of the kinetic energy

We start by defining a notational system to describe
the geometry of the robot.

Following the notations of (Sciavicco and Siciliano
1996), let us introduce the following variables. Let
ṗ`i ∈ R3 and ωi ∈ R3 denote respectively, the vec-
tors of linear and angular velocities of the i-th link’s
center of mass, expressed on the base frame. Sim-
ilarly, ṗmi

∈ R3 and ωmi
∈ R3 are the vectors of

linear and angular velocities of the i-th rotor. The
constant m`i denotes the mass of the i-th link (in-
cluding the mass of the (i + 1)-th stator 1 ), mmi is
the mass of the i-th rotor. Ii

`i
corresponds to the

constant inertia tensor of i-th link relative to its
center of mass, expressed on the fixed frame of the
i-th link (in accordance with Denavit-Hartenberg’s
convention). Correspondingly, ωi

i ∈ R3 is the angu-
lar velocity of the i-th link expressed in the same
frame as Ii

`i
. Imi

mi
is the constant inertia tensor of

the i-th rotor relative to its center of mass expressed
on a frame fixed to the rotor. Under assumption 1
this tensor is diagonal. Correspondingly, ωmi

mi
∈ R3

is the angular velocity of the i-th rotor expressed
in the same frame as Imi

mi
. Ri ∈ R3×3 corresponds

to the rotation matrix expressing the orientation of
the i-th link’s frame with respect to the base frame.
Similarly, Rmi

∈ R3×3 corresponds to the rotation
matrix of the i-th rotor’s frame with respect to the
base frame. Thus, we have that ωi

i = R>
i (q`)ωi and

ωmi
mi

= R>
mi

(q)ωmi
.

Having introduced all these variables, we can now
write the kinetic energy function

T (ṗ, ω) =
1
2

n∑
i=1

(m`i
ṗ>`i

ṗ`i
+ ωi>

i Ii
`i

ωi
i +

mmi
ṗ>mi

ṗmi
+ ωmi>

mi
Imi
mi

ωmi
mi

) . (2)

The kinetic energy expression (2) is the same as for a
robot with rigid or elastic joints and can be found in
the cited textbooks. The variables in the expression
above are Cartesian velocities of each link and rotor
(the stators’ variables are assimilated to those of
the links). These variables are obviously constrained
owing to the fact that the links are “hinged”.

1 Clearly there is no loss of generality in the case that physi-
cally the actuators are concentrated in the same place instead
of being distributed at each joint.



A mapping between the generalized velocities q̇`,
q̇m and the constrained Cartesian velocities ṗ and
ω can be established. The common use of this map-
ping is in rewriting the kinetic energy (2) as a func-
tion of the generalized positions and velocities to
derive the classical Lagrangian model. These map-
pings can be computed following the convention of
Denavit-Hartenberg and are given by the following
expressions

ṗ`i
= J(`i)

P (q`)q̇` (3)

ωi = J(`i)
O (q`)q̇` (4)

ṗmi
= J(mi)

P (q`)q̇` (5)

ωmi
= ωi−1 + ωi−1,mi

(6)

= ωi−1 + J(mi)
O (q`)q̇m (7)

where 1 has been used to compute (5). The Jaco-
bian (3 × n)-matrices J(`i)

P (q`),J
(`i)
O (q`), J(mi)

P (q`)
and J(mi)

O (q`) are defined closely to those for rigid
manipulators as for instance in (Sciavicco and Siciliano
1996). See (Melhem and Loŕıa 2001) for more de-
tails.

As mentioned before, instead of using (3)-(7) to de-
rive the kinetic energy as function of generalized
coordinates we will use (6) to develop the last term
of (2) so that, defining

p = col[p`1 , · · · , p`n
, pm1 , · · · , pmn

] (8a)
ω = col[ω1

1 , · · · , ωn
n , ωm1

0 , · · · , ωmn
n−1,

ωm1
0,m1

, · · · , ωmn
n−1,mn

] . (8b)

the kinetic energy function becomes

T (ṗ, ω) =
1
2

n∑
i=1

(m`i
ṗ>`i

ṗ`i
+ mmi

ṗ>mi
ṗmi

+ ωi>
i Ii

`i
ωi

i

+ωmi>
i−1 Imi

mi
ωmi

i−1 + ωmi>
i−1,mi

Imi
mi

ωmi
i−1,mi

+

ωmi>
i−1 Imi

mi
ωmi

i−1,mi
+ ωmi>

i−1,mi
Imi
mi

ωmi
i−1) . (9)

At this point, to compact the notation we will in-
troduce the state variables

ν1 = col[ṗ`1 , · · · , ṗ`n , ṗm1 , · · · , ṗmn , ω1
1 , · · · , ωn

n ]
ν2 = col[03×1, ω

m2
1 , · · · , ωmn

n−1] ∈ R3n

ν3 = col[ωm1
0,m1

, · · · , ωmn
n−1,mn

] ∈ R3n

ν = col[ν1, ν2, ν3] ∈ R15n

that is, the Cartesian velocities. We also introduce
the constant inertia matrix

M =

M1 0 0
0 M2 M2

0 M2 M2

 ∈ R15n×15n (10)

where M1 ∈ R9n×9n and M2 ∈ R3n×3n are symmet-
ric positive definite and are given by

M1 = block-diag{m`1I3×3, · · · ,m`n
I3×3

mm1I3×3, · · · ,mmnI3×3 , I1
`1 , · · · , In

`n
} ,

M2 = block-diag{Im1
m1

, · · · , Imn
mn

} (11)

hence, M is positive semidefinite. Moreover, under
1 the matrix M2 is diagonal.

Next, we define q̇ 7→ ν, to that end we collect all the
Jacobians defined above in

J1(q`) := col[J(`1)
P , · · · ,J(`n)

P , J(m1)
P , · · · ,J(mn)

P ,

R>
1 J(`1)

O , · · · , R>
n J(`n)

O ] ∈ R9n×n (12a)

J2(q) := col[R>
m1

J(`0)
O , · · · , R>

mn
J(`n−1)

O ] (12b)

J3 = col[R>
m1

J(m1)
O , · · · , R>

mn
J(mn)

O ] ∈ R3n×n (12c)

J (q) :=

J1(q`) 0
J2(q) 0

0 J3

 ∈ R15n×2n . (12d)

Using (3-7), (10) and the definitions of ωmi
mi

and ωi
i ,

we can write in compact form: ν1 = J1(q`)q̇`, ν2 =
J2(q)q̇`, ν3 = J3q̇m and

ν = J (q)q̇ (13)

hence the kinetic energy (9) becomes

T (ν) :=
1
2

ν>1 M1ν1 +
1
2
ν>2 M2ν2 +

1
2

ν>3 M2ν3 +

1
2

ν>2 M2ν3 +
1
2

ν>3 M2ν2 =
1
2

ν>Mν

(14)

which, due to (13) is a positive quantity for all 2

q̇ 6= 0.

In the sequel, we will refer to the equation (13)
as the kinemtic model or the kinematics equation.
This equation establishes the holonomic constraints
on the coordinates of the kinematic chain. Even
though, for convenience we have expressed these
constraints in a form involving the velocities, it is
clear that they can be integrated and expressed as
constraints of the positions 3 π(t) :=

∫ t

t◦
ν(t).

Remark 2. In most of the literature we have seen
the term 1

2 ν>2 M2ν2, which corresponds to the gy-
roscopic forces between each rotor’s spinning and
the preceding links, is neglected. This simplification,
which leads to important differences in the inertia
matrix, is sometimes motivated by the assumption
that the the kinetic energy contribution of the ro-
tors due to their angular velocity, is due only to
their own rotation. An interesting case where these
terms are also considered can be found in (Springer
et al. 1985). �

2.2 Properties of the kinematics Jacobian

We present next some important properties of the
Jacobian matrix J (q). Basically we stress that it is

2 Notice however that T (ν) is not positive for all ν ∈ R15n.
3 One reason no to express the constraints in the form

φ(π) = 0 where φ : R15n → R13n is that
∫ t

t◦
ω(t) does not

always have a clear physical interpretation.



bounded and full column rank. For a more detailed
discussion and proofs of the properties below, the
reader is invited to see (Melhem and Loŕıa 2001).

P1.
a) The matrices J1(q`) and J3 are full-column

rank for all q` ∈ Rn

b) For any kinematic chain with only revolute
or only prismatic joints there exist positive
constants kjm

, kjM
such that

kjm ≤ ‖J (q)‖ ≤ kjM
∀ q ∈ R2n . (15)

For further development, we stress that J1(q`) (re-
spectively J3) is of full column rank if and only
if it is left invertible, i.e., if there exists J †

1 (q`) ∈
Rn×9n (respectively J †

3 ∈ Rn×3n) such that J †
1 (q`)

J1(q`) ≡ In×n (respectively J †
3J3 = In×n).

P2. The induced norms 4 of J †
1 (q`) and J †

3 are
bounded.

P3.
d

dt
{J (q)} =: J̇ (q, q̇) is globally Lipschitz in q̇,

uniformly in q, i.e., ∃ lj > 0 such that

‖J̇ (q, x)− J̇ (q, y)‖ ≤ lj‖x− y‖ ∀ q ∈ Rn .
(16)

Moreover, it has been shown in (Loŕıaet al. 2000)
for the rigid-joints model 5 that 3 implies the ex-
istence of l′j > 0 such that

‖J̇ †(q, x)− J̇ †(q, y)‖ ≤ l′j‖x− y‖ ∀ q ∈ Rn .

(17)

Roughly speaking this property holds since J (q)
contains trigonometric functions of q` and qm for
rotational joints manipulators and constants corre-
sponding to prismatic joints.

Fact 3. (Melhem and Loŕıa 2001) Given a robot
manipulator with only prismatic or only revolute
joints, the Jacobian matrix J (q) given in (12d) al-
ways admits a constant left pseudo-inverse.

Remark 4. Interestingly enough, it is not clear from
the proof of this fact how whether it is valid also for
kinematic structures with both prismatic and revo-
lute joints. This is because the structural properties
of the Jacobians, exploited to prove the Fact for the
only-revolute or only-prismatic cases, are destroyed.
�

2.3 Derivation of the potential energy

The potential energy stocked in the manipulator
at any moment can be decomposed in three main
terms:

U(q) = U`(q`) + Um(q`) + Ue(q) . (18)

4 Or any other compatible norm.
5 The proof is long but straightforward and can be estab-
lished along the same lines for the flexible-joints model.

U` is the contribution of the links and is given by

U`(q`) = −
n∑

i=1

m`ig
>
o p`i(q`) (19)

where we recall that p`i
(q`) is the vector of Carte-

sian coordinates of the i-th link’s center of mass.
Um is the contribution of the rotors’ centers of mass
and under assumption 1, Um does not depend on
qm. More precisely,

Um(q`) = −
n∑

i=1

mmi
g>o pmi

(q`) (20)

where go ∈ R3 is the vector of gravity acceleration
expressed in the base frame. The third term Ue cor-
responds to the contribution due to the elasticity in
the transmissions and is given by the well known
relation

Ue(q) =
1
2
(q` − qm)>K(q` − qm) (21)

where K = diag{k1, · · · , kn} > 0 is the stiffness
matrix of the articulations. For notational simplicity
we will write Ue as

Ue(q) =
1
2
q>Ke q (22)

where q = col[q`, qm] and

Ke =
(

K −K
−K K

)
. (23)

2.4 A redundant Lagrangian model

We present here the Lagrangian dynamics which we
will derive from the kinetic and potential energies
proposed above. To that end we will need to in-
troduce temporarily the coordinates π = col[p, φ]
such that π̇ := ν. As mentioned before, while in
certain cases the coordinates φ may correspond to
Euler angles or any other set of angles to describe a
rotation, in general, do not have a clear physical in-
terpretation however, since the gravitational energy
of the bodies (links and actuators) does not depend
on their orientation but only on their Cartesian po-
sitions, we will use

Ũm(π) =−
n∑

i=1

mmig
>
o pmi , (24)

Ũ`(π) =−
n∑

i=1

m`i
g>o p`i

, (25)

Ũe(π) =
1
2
η(π)>Ke η(π) (26)

where η : π 7→ q is not one to one. In other words,
regarding the generalized coordinates as function of
the Cartesian ones, one can find more than one value
for π corresponding to the same q. However, the
right hand side of (26) equals always Ue(q) given in
(22).



Under these considerations we will derive the dy-
namic model using the Lagrange’s equations

d

dt

∂L
∂ν

− ∂L
∂π

= Q (27)

where L(π, ν) = T (ν) − Ũ(π(q)) is the Lagrangian
function and Q ∈ R15n is the vector of reaction and
external forces compatible with the constraints (13).

We consider that the system’s coordinates are π =
col[p, φ] ∈ R15n and ν = col[ṗ, ω] ∈ R15n which are

given by (8). Considering the kinetic energy (14) the
Lagrange’s equations (27) become

Mν̇ +
∂Ũ`

∂π
+

∂Ũm

∂π
+

∂Ũe

∂π
= Q (28)

where it is clear from (24) and (25) that

∂Ũ`

∂π
= col[−m`1go, · · · ,−m`ngo, 012n×1] (29)

∂Ũm

∂π
= col[03n×1,−mm1go, · · · ,−mmngo, 09n×1] .

(30)

Also, using the left invertibility of J (q) it can be
shown (see (Melhem and Loŕıa 2001)) that the so-

lutions of J>(q)
∂Ũe

∂π
= Keq are characterized by

∂Ũe

∂π
= J †(q)>Keq (31)

where J †(·) ∈ R2n×15n is such that J †(q)J (q) ≡
In×n. Thus, using (31), (29), (30) in (28) we obtain

Mν̇ + v + J †(q)>Keq = Q (32)

where

v := col[−m`1go, · · · ,−m`n
go,−mm1go, · · · ,

−mmngo, 09n×1] .

Thus, the redundant model is given by the dynamics
equation (32) and the kinematics equation (13). In
words, the equation (32) represents the dynamics
of 2n rigid bodies (n links and n rotors) as if they
could move freely in the space hence possesing each
6 degrees of freedom. The kinematics equation (13)
expresses the 13n holonomic constraints owed to
the fact that the bodies are mechanically connected
together. With this in mind one might think that
12n coordinates is a more natural choice to express
the dimension of the redundant model. Notice that
the 3n “extra” coordinates are generated by the fact
that we do not neglect the angular velocities of the
rotors relative to the links which carry them, i.e.,
the coordinates ωi−1,mi

.

3. DISCUSSION

The following remarks are in order.

1) We stress that the Jacobian J2 depends on the
link and motor coordinates while it can be proven
that the matrix J3 is constant since R>

mi
(q)J(mi)

O (q`)
is constant for any i ≤ n and any q ∈ Rn.

2) Under assumption 1, the linear velocity of each
rotor is independent of the motor variables qm. This
is reflected in the fact that J1(·) depends only on q`

for both the full and reduced order model.

3) For the full model, considering (6), the contribu-
tions of the motor angular velocities to the kinetic
energy is given by the following 3 terms

1
2
ω>mi

Rmi
Imi
mi

R>
mi

ωmi
=

1
2
ω>i−1Rmi

Imi
mi

R>
mi

ωi−1 +

ω>i−1Rmi
Imi
mi

R>
mi

ωi−1,mi
+

1
2
ω>i−1,mi

RmiI
mi
mi

R>
mi

ωi−1,mi

where
• The sum of the 3rd term for all rotors, using (6),
(11) and (12c), yields

1
2

n∑
i=1

(ω>i−1,mi
Rmi

Imi
mi

R>
mi

ωi−1,mi
) =

1
2
q̇>mJ>

3 M2J3q̇m

where H3 := J>
3 M2J3 is a constant diagonal ma-

trix which depends on the constant inertia tensors
and the gear ratios.

• The sum over all rotors of the 2nd term, using (4),
(11), (12b) and (12c), takes the form

n∑
i=1

(ω>i−1Rmi
Imi
mi

R>
mi

ωi−1,mi
) =

1
2
q̇>` J2(q)>M2J3q̇m +

1
2
q̇>mJ>

3 M2J2(q)q̇`

where under 1 (which implies that Imi
mi

is diagonal)
the matrix H2(q`) = J2(q)>M2J3 is independent of
the rotor generalized positions qm.

• The sum of the first term over all rotors, using
(4), (11) and (12b), is given by

1
2

n∑
i=1

(ω>i−1RmiI
mi
mi

R>
mi

ωi−1) =
1
2
q̇>` J2(q)>M2J2(q)q̇`

where the matrix J2(q)>M2J2(q) depends in gen-
eral, on both the rotor and links positions qm, q`

and determines the gyroscopic terms.

Thus owing to these observations one can derive the
(2n× 2n)-inertia matrix as a function of q` and qm,
explicitly one has that

H(q) =
[

H1(q) H2(q`)
H2(q`)> H3

]
(33)

where the matrix H1(q) contains the inertia contri-
butions of the links and that of the gyroscopic terms



J2(q)>M2J2(q). It is clear that if the latter are ne-
glected H1(·) depends only on q`. The matrix H2(q`)
has a triangular form and is the same that one finds
in the inertia matrix of the model used in (Nicosia
and Tomei 1990) and succeeding references.

4) Indeed, it is straight forward to verify that using
the kinematics equation (13) in (32) and premulti-
plying on both sides of (32) one obtains the model
of flexible-joint robots with a non block-diagonal in-
ertia matrix used in (Nicosia and Tomei 1990) and
related references of Nicosia’s coauthors. If further-
more, one neglects the second line and second col-
umn of the matrix in (10) and the second line of the
Jacobian matrix in (12d) one obtains the model of
(Spong 1987).

5) The model (32) is the flexible-joints counterpart
of the model presented in (Loŕıaet al. 2001) for rigid-
joint manipulators.

6) Conversely, one can obtain the model (32), (13)
starting from the Lagrangian equations 6

H(q)q̈ + C(q, q̇)q̇ + Keq + g(q) = u

using (13), observing that H = J (q)>MJ (q), C(qq̇) =

J (q)>M
˙︷ ︷

J (q), g(q) = J (q)>v and restricting the
exrternal forces Q ∈ R15n to satisfy

J (q)>Q = u =
[

0n

um

]
where um corresponds to the vector of n generalized
torques delivered by the motors.
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4. CONCLUSIONS

We presented a new model for open kinematic chains
which is a non minimal realization of the system
dynamics and is composed by a set of dynamic and
kinematic equations. It is expressed in the Cartesian
velocities and generalized positions.
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