
APPROXIMATE EXPLICIT MODEL PREDICTIVE
CONTROL IMPLEMENTED VIA ORTHOGONAL

SEARCH TREE PARTITIONING

Tor A. Johansen1, ∗ and Alexandra Grancharova2, ∗

∗ Department of Engineering Cybernetics, Norwegian University
of Science and Technology, 7491 Trondheim, Norway.

Abstract: Solutions to constrained linear model predictive control (MPC) problems
can be pre-computed off-line in an explicit form as a piecewise linear (PWL) state
feedback defined on a polyhedral partitioning of the state space. Even though real-time
optimization is avoided, implementation of the PWL state feedback may still require
a significant amount of computations. We suggest an algorithm that will determine
an approximate explicit PWL state feedback solution by imposing an orthogonal
search tree structure on the partition. This leads to efficient real-time computations
and admits implementation at high sampling frequencies in embedded systems with
inexpensive processors and low software complexity. The algorithm yields guarantees
on the cost function error and constraint violations.

1. INTRODUCTION

The main motivation behind explicit model pre-
dictive control (MPC) is that an explicit state
feedback law avoids the need for real-time opti-
mization, and is therefore potentially useful for
applications with fast sampling where MPC has
not traditionally been used. In (Bemporad et
al. 2002, Bemporad et al. 2000) it was recog-
nized that the constrained linear MPC problem
is a multi-parametric quadratic program (mp-
QP), when the state is viewed as a parameter to
the problem. They show that the solution (the
control input) has an explicit representation as
a piecewise linear (PWL) function on a poly-
hedral partition of the state space and develop
an mp-QP algorithm to compute this function.
The solution can also be constructed by the algo-
rithms (Johansen et al. 2000, Seron et al. 2000). In
(Tøndel et al. 2001) a significantly more efficient
mp-QP solver is developed by inferring additional
information about neighboring regions during the
iterative solution. The approach of (Johansen
et al. 2000), starting with the Hamilton-Jacobi-
Bellman equation for the optimal control problem,
allows sub-optimality to be introduced by pre-
determining a small number of sampling instants

� This work was sponsored by the European Commission
through the Research Training Network MAC (Multi
Agent Control)
1 Email: Tor.Arne.Johansen@itk.ntnu.no
2 On leave from Institute of Control and System Research,
Bulgarian Academy of Sciences, Acad. G. Bonchev str.,
Bl.2, P.O.Box 79, Sofia 1113, Bulgaria.

when the active set is allowed to change on the
horizon. The advantage of this is less regions
in the polyhedral partition. A similar approach
was suggested in (Tøndel and Johansen 2002) for
mp-QP based explicit MPC. An alternative sub-
optimal approach was introduced in (Bemporad
and Filippi 2001) where small slacks are intro-
duced on the optimality conditions and the mp-
QP algorithm of Bemporad et al. (2000) is modi-
fied for the relaxed problem. This leads to reduced
computational complexity and reduced complex-
ity of the solution (in terms of less regions in the
partition). Another method for reduction of com-
putational complexity are proposed in (Borrelli et
al. 2001).

Here we suggest a different approach to compute
sub-optimal explicit MPC solutions. The idea is
to require that the state space partition is rep-
resented as a search tree, i.e. to consist of or-
thogonal hypercubes organized in a hierarchical
data-structure that allows extremely fast real-
time search. The computational complexity with
the suggested approach is logarithmic with respect
to the number of regions, while a general polyhe-
dral partitioning leads to a computational com-
plexity that is linear with respect to the number of
regions, if no additional data structures are built,
cf. (Tøndel and Johansen 2002). The optimal
solution is computed explicitly using quadratic
programming (QP) only at the vertices of these
hypercubes, and an approximate solution valid in
the whole hypercube is computed based on this
data. A hypercube is partitioned into two or more

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

smaller hypercubes only if this is necessary to
achieve the desired local accuracy of the solution.
This makes the idea similar to storing the pre-
computed QP solutions at the various states in a
multi-resolution lookup table.

Unlike any other method mentioned above, that
all relies on the linearity of the problem to build
polyhedral regions and a PWL solution, the sug-
gested method is straightforward to extended to
convex nonlinear constrained MPC problems by
replacing the QPs with convex nonlinear pro-
grams. Other function approximation methods for
optimal control are described in (Parisini and
Zoppoli 1995, Parisini and Zoppoli 1996, Bert-
sekas and Tsitsiklis 1998).

2. EXPLICIT MPC AND EXACT MP-QP

Formulating a linear MPC problem as an mp-
QP is briefly described below, see (Bemporad et
al. 2002) for further details. Consider the linear
system

x(t + 1) = Ax(t) + Bu(t) (1)

where x(t) ∈ R
n is the state variable, u(t) ∈ R

m

is the input variable, A ∈ R
n×n, B ∈ R

n×m and
(A,B) is a controllable pair. For the current x(t),
MPC solves the optimization problem

V ∗(x(t)) = min
U�{ut,...,ut+N−1}

J(U, x(t)) (2)

subject to xt|t = x(t) and

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, 1, ..., N − 1 (3)

xt+k+1|t = Axt+k|t + But+k, k ≥ 0

yt+k|t = Cxt+k|t, k ≥ 0

with the cost function given by

J(U, x(t)) =
N−1∑
k=0

(
xT

t+k|tQxt+k|t + uT
t+kRut+k

)

+xT
t+N |tPxt+N |t (4)

and symmetric R > 0, Q ≥ 0, P > 0. The final
cost matrix P may be taken as the solution of the
algebraic Riccati equation. With the assumption
that no constraints are active for k ≥ N this
corresponds to an infinite horizon LQ criterion
(Chmielewski and Manousiouthakis 1996). This
and related problems can by completing squares
be reformulated as

V ∗
z (x) = min

z

1
2
zT Hz (5)

subject to Gz ≤ W + Sx (6)

where z � U + H−1FT x. Note that H > 0
since R > 0. The vector x is the current state,
which can be treated as a vector of parameters.
A similar reformulation can also be found for the

tracking problem or when infeasibility relaxations
are included, (Bemporad et al. 2002). For ease of
notation we write x instead of x(t). The number
of inequalities is denoted q and the number of
free variables is nz = m · N . Then z ∈ R

nz ,
H ∈ R

nz×nz , G ∈ R
q×nz , W ∈ R

q×1, S ∈ R
q×n.

The solution of the optimization problem (5)-(6)
can be found in an explicit form z∗ = z∗ (x),
Bemporad et al. (2000):

Theorem 1. Consider the mp-QP (5)-(6) and
suppose H > 0. The solution z∗(x) (and U∗(x))
is a continuous PWL function of x defined over
a polyhedral partition of the parameter space,
and Vz(x) is a convex (and therefore continuous)
piecewise quadratic function.

�

As shown in (Bemporad et al. 2000), the mp-QP
problem (5) - (6) can be solved by applying the
Karush-Kuhn-Tucker (KKT) conditions

Hz + GT λ = 0 (7)

diag(λ) (Gz − W − Sx) = 0 (8)

λ≥ 0 (9)

Gz − W − Sx≤ 0 (10)

with λ ∈ R
q. Since H has full rank, (7) gives

z = −H−1GT λ (11)

Assume for the moment that we know which
constraints are active at the optimum for a given
x. Let λ̃ be the Lagrange multipliers of the active
constraints, λ̃ ≥ 0. We can now form matrices
G̃, W̃ and S̃ which contains the rows of G, W
and S corresponding to the active constraints.
Assume that G̃ has full row rank, such that the
rows of G̃ are linearly independent (see (Tøndel et
al. 2001) and (Bemporad et al. 2002) for details on
how to handle degenerate situations when this is
violated). For the active constraints, (8) and (11)
gives −G̃H−1G̃T λ̃ − W̃ − S̃x = 0, which leads to

λ̃ = −(G̃H−1G̃T)−1(W̃ + S̃x). (12)

Eq. (12) can now be substituted into (11) to
obtain

z = H−1G̃T (G̃H−1G̃T)−1(W̃ + S̃x). (13)

We have now characterized the solution to (5)-
(6) for a given optimal active set, and a fixed x.
However, as long as the active set remains optimal
(in a neighborhood of x), the solution (13) remains
optimal, when z is viewed as a function of x.
Next, we characterize the region where this active
set remains optimal. First, z must remain feasible
(10)

GH−1G̃T (G̃H−1G̃T)−1(W̃ + S̃x) ≤ W + Sx.
(14)

Second, the Lagrange multipliers λ must remain
non-negative (9)

−(G̃H−1G̃T)−1(W̃ + S̃x) ≥ 0. (15)

The inequalities (14) and (15) describe a polyhe-
dron in the state space. This region is denoted
as the critical region CR0 corresponding to the
given set of active constraints. This region is a

−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Partition of state space

Fig. 1. Polyhedral partition of state space, N =
10.

polyhedral set and represents the largest set of
parameters x such that the combination of active
constraints at the minimizer remains optimal. Al-
gorithms for iteratively constructing a polyhedral
partition of the state space into critical regions
and computing the PWL solution are given by
(Bemporad et al. 2000, Tøndel et al. 2001).

Example. Consider the double integrator (Johansen
et al. 2000)

A =
[

1 Ts
0 1

]
, B =

[
T 2

s
Ts

]

where the sampling interval Ts = 0.05, and con-
sider the MPC problem with cost matrices Q =
diag(1, 0), R = 1, and the matrix P > 0 given as
the solution of the algebraic Riccati equation. The
constraints are −0.5 ≤ x2 ≤ 0.5 and −1 ≤ u ≤ 1.
Figure 1 shows the partition for horizon N = 10
corresponding to the exact solution provided by
the algorithm (Tøndel et al. 2001). We observe
that the exact solution is fairly complex, contain-
ing 191 polyhedral critical regions, many of them
of very small volume.

3. ERROR BOUNDS

When constructing approximate solutions it is
useful to be able to compute bounds on the ap-
proximation error. We consider any approximate
solution ẑ0(x) defined on an arbitrary polyhedron
X0 ⊂ R

n. The corresponding cost is given by

V̂z(x) =
1
2
ẑT
0 (x)Hẑ0(x) (16)

Assume we know the exact solution only at the
vertices of X0, and need to compute uniform
bounds on the error V̂z(x)−V ∗

z (x) (for all x ∈ X0).
Since no assumption has so far been made on
the feasibility of ẑ0(x), we cannot conclude that
V̂z(x) itself is an upper bound on V ∗

z (x). Instead,
we proceed similar to Fiacco (1983) and take
advantage of the convexity of V ∗

z to derive upper
and lower bounds on V ∗. Let the polyhedron X0
be represented by its vertices V = {v1, v2, ..., vM}.
Define the affine function L(x) = L0x + l0 as the
solution to the following LP:

min
L0,l0

(
L0v + l0

)
(17)

subject to

L0vi + l0 ≥ V ∗
z (vi), for all i ∈ {1, 2, ...,M} (18)

Likewise, define the affine function

L(x) = V ∗
z (v) + ∇T V ∗

z (v)(x − v) = L0x + l0

where v ∈ X0 is arbitrary. If V ∗
z is not differen-

tiable at v, ∇V ∗
z (v) is taken as any sub-gradient.

We observe that both L and L can be defined us-
ing only information computed from the solutions
of the QPs at the points in V ∪ {v}. Typically,
we choose v near the center of X0 to minimize
conservativeness.

Theorem 2. For all x ∈ X0 the following inequal-
ities hold

V (x) � L(x) +
1
2
xT Px ≤ V ∗(x) ≤

L(x) +
1
2
xT Px � V (x) (19)

Proof. The upper bound is a consequence of the
convexity of V ∗

z , cf. Theorem 1, combined with
the fact V ∗(x) = V ∗

z (x) + 1
2xT Px. To see this,

let x ∈ X0 be arbitrary, and consider the convex
combination x =

∑
i αivi where αi ≥ 0 satisfies∑

i αi = 1:

V ∗
z (x)≤

M∑
i=1

αiV
∗
z (vi)

≤
M∑
i=1

αi

(
L0vi + l0

)

= L0x + l0

The lower bound is derived as follows:

V ∗
z (x)≥ V ∗

z (v) + ∇T V ∗
z (v)(x − v) (20)

as a consequence of the convexity of V ∗
z .

�

It follows that −ε1 ≤ V ∗(x) − V̂ (x) ≤ ε2 where

ε2 = max
x∈X0

(
V (x) − V̂ (x)

)
(21)

ε1 = max
x∈X0

(
V̂ (x) − V (x)

)
(22)

Hence, ε1 and ε2 can be computed by solving two
QPs.

4. APPROXIMATE MP-QP ALGORITHM

We restrict our attention to a hypercube X ⊂ R
n

where we seek to approximate the optimal PWL
solution z∗(x) to the mp-QP (5)-(6). In order to

minimize the real-time computational complex-
ity we require that the state space partition is
orthogonal and can be represented as a search
tree (generalized quad-tree or oct-tree, (de Berg
et al. 2000)). Then the search complexity is log-
arithmic with respect to the number of regions.
The orthogonal search tree is a hierarchical data
structure where a hypercube can be sub-divided
into smaller hybercubes allowing the local resolu-
tion to be adapted, cf. Figure 2. When searching
the tree, only n scalar comparisons are required
at each level.

Fig. 2. Quadtree partition of a rectangular region
in a 2-dimensional state-space.

Initially the algorithm will consider the whole
region X0 = X. The main idea of the approximate
mp-QP algorithm is to compute the solution of the
problem (5)-(6) at the 2n vertices of the hypercube
X0, by solving up to 2n QPs. Based on these
solutions (13), written in the compact notation

z0
i (x) = K0

i x + g0
i (23)

we compute a local approximation ẑ0(x) to the
PWL optimal solution z∗(x), restricted to the
hypercube X0. As described above, the linear
solution (23) is exact in some polyhedral critical
region containing the vertex vi. A simple approx-
imation is the linear approximation

ẑ0(x) = K0x + g0 (24)

using averaged gain matrices

K0 =
1
2n

2n∑
i=1

K0
i , g0 =

1
2n

2n∑
i=1

g0
i

Based on this information we are able to compute
the error bound

ε = max(ε1, ε2) (25)

from (21) and (22). In addition we need to con-
sider violation of the constraints as measured by
the vector δ̃(x) defined by

δ̃(x) = D(G(K0x + g0) − W − Sx) (26)

where D is a diagonal scaling matrix with pos-
itive elements. The maximum violation of each
constraint within a polyhedron X0 is computed
by solving the set of LPs

δj = max
x∈X0

δ̃j(x) (27)

for j = 1, 2, ..., q. Now, if the cost function error
ε is smaller than some prescribed tolerance ε and
the constraint violations δj are smaller than some
prescribed tolerance δj , no further refinement of
the region X0 is needed. Otherwise, we partition
X0 into 2n equal-sized hypercubes, and repeat the
procedure described above for each of these. This
algorithm can be summarized as follows.

Algorithm 1 (approximate mp-QP)

1. Initialize the partition to the whole hypercube,
i.e. P = {X}. Mark the hypercube X as unex-
plored.

2. Select any unexplored hypercube X0 ∈ P. If no
such hypercube exists, the algorithm terminates
with the partition P.

3. Compute the solution to the QP (5)-(6) for x
fixed to each of the 2n vertices of the hypercube
X0 and its center point (some of these QPs
may have been solved in earlier steps). From the
optimal active set at each solution, compute the
local linear optimal solution (13).

4. From the local linear optimal solutions at the
vertices of the hypercube, compute a continuous
local linear state feedback (24) as an approxima-
tion to be used in the hypercube X0.

5. Determine if the hypercube needs to be split in
order to reduce the cost function approximation
error bound ε or the constraint violations bound
δ. If so, go to step 6. Otherwise, mark X0 explored
and go to step 2.

6. Split the hypercube X0 into hypercubes X1,
X2, ..., X2n . Mark them all unexplored, remove
X0 from P, add X1, X2, ..., X2n to P and go to
step 2.

�

This algorithm will terminate with a piecewise
continuous and PWL function that is an approx-
imation to the continuous PWL exact solution.

Theorem 3. Consider the mp-QP problem (5)-
(6) defined on a hybercube X. Suppose D > 0
and ε, δ > 0 are given and we require in Step 5 of
Algorithm 1 that ε ≤ ε and δ ≤ δ (elementwise).
Then Algorithm 1 terminates after a finite number
of steps with an approximate solution ẑ(x) and
associated cost V̂ (x) that satisfies

sup
x∈X

|V̂ (x) − V ∗(x)| ≤ ε (28)

and constraints satisfying

sup
x∈X

D (Gẑ(x) − W − Sx)≤ δ (29)

Proof. The bounds (28) and (29) follows from
Theorem 2 due to step 5 of the algorithm that
ensures that the algorithm will not terminate
before the cost and constraint errors respect their
bounds in all hypercubes of the partition.

The algorithm terminates after a finite number of
steps because the optimal cost V ∗ is continuous
and can be uniformly approximated to arbitrary
accuracy by a sufficiently large finite number of
regions. Due to this regularity, the bound on the
error is reduced by some fraction at each step
due to the quad-tree splitting into equal-sized
hypercubes. A similar argument can be used also
on the constraint violations since δ is strictly
positive.

�

It might be useful if we construct the local linear
approximation of the control law such that fea-
sibility is guaranteed (only optimality is relaxed)
rather than using the averaging (24). As shown in
(Bemporad and Filippi 2001), one may solve a QP
to compute feasible approximate local linear state
feedbacks. Then V̂z is an upper bound on V ∗

z .

An advantage of the present method, compared to
(Bemporad and Filippi 2001), is that a posteriori
analysis of the approximation error is in general
not needed.

Improved accuracy might be achieved if some in-
terpolation scheme is used instead of the averaging
(24), at the cost of increased real-time computa-
tional complexity and local non-linearity.

The method can be easily adapted to other spatial
data structures such as k-d-trees and others (de
Berg et al. 2000). This would be expected to lead
to less regions, especially for larger n.

A variant of the algorithm may include partitions
where a small number of candidate active sets
must be compared in real time for each given
hypercube. This allows the real-time computer
memory requirements to be reduced at the cost
of increased real-time computations.

When there is noise or uncertainty on the state,
this imposes a limitation on how small regions are
necessary. In such cases one may impose a toler-
ance that prevents the algorithm from generating
such small regions.

Recognition of the same solution in neighboring
hypercubes that can be combined are easily done,
as such hypercubes would be leaf-nodes with the
same parent node in the tree. We recommend
this is implemented as a post-processing step in
order to take into account that only the first m
elements of the solution z∗ are required for the
MPC implementation. Likewise, a useful heuristic
is to only require approximate feasibility at the
first sample.

5. EXAMPLE

Consider the double integrator example intro-
duced above. With ε = 0.4 and δu = 0.2 for
input constraints and δx = 0.005 for state con-
straints, Algorithm 1 gives the quad-tree partition
in Figure 3 with 412 regions for N = 10. Figure 4

−3 −2 −1 0 1 2 3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Fig. 3. Partition for double integrator, N = 10.

Table 1. Characteristics of approximate
and exact explicit MPC solutions for the
double integrator example as a function

of the horizon N .

Exact Approx. Ave. u Max u
N regions regions error error
1 5 - - -
2 13 232 0.029 0.67
3 23 280 0.032 0.72
4 35 322 0.017 0.35
5 51 334 0.017 0.35
6 71 394 0.013 0.29
7 95 400 0.013 0.30
8 123 394 0.014 0.31
9 155 406 0.012 0.31
10 191 412 0.014 0.37
11 231 394 0.013 0.31
12 277 394 0.013 0.33
13 325 388 0.012 0.34
14 379 394 0.012 0.34
15 437 394 0.012 0.31

Table 2. Characteristics of approximate
explicit solutions for the double integra-
tor example as a function of the toler-

ance parameters.

Num. Ave. Max

(ε, δu, δx) regions error error
(0.8,0.3,0.01) 232 0.024 0.67
(0.4,0.2,0.005) 412 0.014 0.37
(0.2,0.1,0.0025) 898 0.008 0.34
(0.1,0.05,0.001) 1570 0.004 0.35

shows a typical trajectory with the exact and ap-
proximate approach, both starting from the same
initial state. We observe that the discrepancy is
small. Table 1 summarizes the properties of the
approximate approach compared to the exact ap-
proach, as a function of the horizon N , while
Table 2 illustrates how the approximate solution
depends on the tolerance parameters ε, δu, δx. We
observe that with the exact approach the number
of regions grow rapidly with the horizon N , while
with the approximate approach the number of
regions is fairly independent of the horizon N .
This is to be expected since the regularity (which
essentially determines the difficulty of approxima-
tion) of the controller mapping x �→ u is fairly
independent of N . For most N there are 7 levels
in the quad-tree. With two scalar comparisons re-
quired at each level, a total of 14 scalar arithmetic
operations are required in the worst case to de-
termine which region the state belongs to, which
is impossible to achieve with the exact approach.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

2

2.5

time instants

x
2
(t)

x
1
(t)

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time instants

u(t)

Fig. 4. The solid and dashed curves show an exact
and approximate trajectory, respectively, for
the double integrator example.

The real-time computer memory requirements are
similar for the two cases, while the off-line com-
putation time may be larger in the approximate
case depending on the required accuracy. Thus,
the main advantage of the approximate approach
is that is admits a highly efficient real-time imple-
mentation based on a search tree. We note that
although the specification allowed some input and
state constraint violations, significant violations
are only present in very small parts of the state
space.

Like the exact solution, the complexity of the
approximate solution typically increases exponen-
tially with n (the order to the system). The com-
plexity of the approximate solution also typically
increases exponentially with respect to the re-
quired accuracy. However, while the complexity
of the exact solution increases exponentially with
the horizon N , the present approximate solution
seems to be fairly independent of N .

6. CONCLUSIONS

An algorithm for off-line computation of approxi-
mate explicit solutions to linear constrained MPC
problems is described. The algorithm allows toler-
ances on the approximation error and constraint
violations to be specified, and guarantees that
these tolerances are not violated. The resulting
explicit piecewise linear state feedback is defined
on an orthogonal partition of the state space

that allows very efficient real-time computations
through a search tree.

7. REFERENCES

Bemporad, A. and C. Filippi (2001). Subopti-
mal explicit MPC via approximate quadratic
programming. In: Proc. IEEE Conf. Decision
and Control, Orlando. pp. FrP08–5.

Bemporad, A., M. Morari, V. Dua and E. N.
Pistikopoulos (2000). The explicit solution of
model predictive control via multiparametric
quadratic programming. In: Proc. American
Control Conference, Chicago. pp. 872–876.

Bemporad, A., M. Morari, V. Dua and E. N.
Pistikopoulos (2002). The explicit linear
quadratic regulator for constrained systems.
Automatica 38, 3–20.

Bertsekas, D. P. and J. N. Tsitsiklis (1998).
Neuro-dynamic Programming. Athena Scien-
tific, Belmont.

Borrelli, F., M. Baotic, A. Bemporad and
M. Morari (2001). Efficient on-line computa-
tion of explicit model predictive control. In:
Proc. IEEE Conf. Decision and Control, Or-
lando. pp. TuP11–2.

Chmielewski, D. and V. Manousiouthakis (1996).
On constrained infinite-time linear quadratic
optimal control. Systems and Control Letters
29, 121–129.

de Berg, M., M. van Kreveld, M. Overmars and
O. Schwarzkopf (2000). Computational Ge-
ometry, 2nd edition. Springer-Verlag, Berlin.

Fiacco, A. V. (1983). Introduction to sensitivity
and stability analysis in nonlinear program-
ming. Orlando, Fl: Academic Press.

Johansen, T. A., I. Petersen and O. Slup-
phaug (2000). On explicit suboptimal LQR
with state and input constraints. In: Proc.
IEEE Conf. Decision and Control, Sydney.
pp. TuM05–6.

Parisini, T. and R. Zoppoli (1995). A receding-
horizon regulator for nonlinear systems and a
neural approximation. Automatica 31, 1443–
1451.

Parisini, T. and R. Zoppoli (1996). Neural ap-
proximations for multistage optimal control
of nonlinear stochastic systems. IEEE Trans.
on Automatic Control 41, 889–895.

Seron, M., J. A. De Dona and G. C. Good-
win (2000). Global analytical model predic-
tive control with input constraints. In: Proc.
IEEE Conf. Decision and Control, Sydney.
pp. TuA05–2.

Tøndel, P. and T. A. Johansen (2002). Complex-
ity reduction in explicit model predictive con-
trol. In: Preprints, IFAC World Congress,
Barcelona.

Tøndel, P., T. A. Johansen and A. Bemporad
(2001). An algorithm for multi-parametric
quadratic programming and explicit MPC
solutions. In: Proc. IEEE Conf. Decision and
Control, Orlando. pp. TuP11–4.

