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Abstract: In this paper we consider the problem of the existence and stability
of invariant manifolds in a network of diffusively coupled identical systems. It is
shown that the existence of a symmetry in the network implies the existence of
linear invariant manifolds. This correspond to so called partial synchronization, or
clusterization, a phenomenon occurring when some subsystems from the network
operate in a synchronous manner. Conditions guaranteeing global asymptotic stability
of the partial synchronization manifolds are presented. Copyright c© IFAC 2002
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1. INTRODUCTION

The last decade has witnessed a growing attention
of the scientific community on the study of syn-
chronized behaviour of coupled dynamical systems
(see Special Issue, 1997, and references therein),
whether the dynamics is continuous, discrete, or
spatiotemporal. The discovery that synchroniza-
tion can be found (or even be induced) among
coupled chaotic oscillators provided additional mo-
mentum for the developments of synchronization
techniques, to possibly exploit properties of chaotic
dynamics for application, for example, as analog
carrier for encoding or masking messages in a se-
cure manner (Cuomo et al., 1993). For two identical
systems suitably coupled, synchronous motion is
most often understood as the equality of corre-

sponding variables of the two systems. In other
words, the trajectories of two (or more) identical
systems will follow, after some transient, the same
path in time.

The equality of corresponding state variables is
not, of course, the only commonly understood sit-
uation of synchronization. It is not at all uncom-
mon, for example, to find anti-phase synchronous
behaviour in coupled oscillators. This feature is
present in, for example, two or more paramet-
rically excited pendula linearly coupled through
their pivots. If (θ1(t), ω1(t)) and (θ2(t), ω2(t))
indicate angular position and velocity of the
two oscillators, different initializations of the two
pendula may result in in-phase synchronization
(θ1(t), ω1(t)) = (θ2(t), ω2(t)), or anti-phase syn-
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chronization (θ1(t), ω1(t)) = (−θ2(t),−ω2(t)), that
we both regard as synchronous behaviour. To fur-
ther generalize the description of what synchronous
motion can be, it has been further studied the case
in which the relationship between different sets of
variables of two or more coupled oscillators is not
a linear function, or maybe not even a smooth
function (Stark, 1997; Kocarev and Parlitz, 1999).

The scope of this paper is to analyze the rela-
tionship that occurs between a symmetry of a
network composed by coupled identical oscillators,
and the different linear invariant subsets that the
system may possess, investigating their existence
and stability. Important previous results on this
topic have been obtained by (Dionne et al., 1996),
who investigated the symmetries of the network
combined with the symmetries of the vector field,
and by (Belykh et al., 2000), who investigated
the existence and stability of invariant manifolds
in linear arrays of coupled systems, with identical
coupling constants. In this paper, instead, we allow
for coupling constants to be different, but symmet-
rically arranged. The paper is organized as follows:
after we list some preliminary notions in Section
2, the problem statement is expressed in Section 3.
The symmetries of a given network is analyzed in
Section 4, and the stability of invariant manifolds
is studied in Section 5. Some conclusions close the
paper.

2. PRELIMINARIES

The Euclidean norm in R
n is denoted simply as

| · |, |x|2 = x�x, where � defines transposition. The
notation col(x1, x2, . . . , xn) stands for the column
vector composed of the elements x1, . . . , xn. This
notation will also be used in case where the com-
ponents xi are vectors again.

A function V : X → R+ defined on a subset X of
R

n, 0 ∈ X is positive definite if V (x) > 0 for all
x ∈ X \ {0} and V (0) = 0. It is radially unbounded
(if X = R

n) or proper if V (x) → ∞ as |x| → ∞. For
two square matrices A and B [A,B] stands for the
commutator [A,B] = AB − BA, that is [A,B] = 0

if A and B commute. We also denote with Ik the
k × k identity matrix.

If all solutions of the dynamics ẋ = f(x) eventually
end up within a bounded domain which can be
chosen independently of the initial conditions then
the system is referred to as ultimately bounded.

For matrices A and B the notation A⊗B (the Kro-
necker product) stands for the matrix composed of
submatrices AijB, i.e.

A ⊗ B =




A11B A12B · · · A1nB

A21B A22B · · · A2nB
...

...
. . .

...
An1B An2B · · · AnnB


 (1)

where Aij , i, j = 1 . . . n, stands for the ij-th entry
of the n × n matrix A.

Consider the nonlinear time-invariant affine sys-
tem: 

ẋ = f(x) + g(x)u

y = h(x)
(2)

where x ∈ R
n is the state, u ∈ R

m is the
input which is assumed to be any continuous and
bounded function of time: u(·) ∈ C0 ∩ L∞, y(t) ∈
R

m is the output; f : R
n → R

n, f(0) = 0,
g : R

n → R
n×m are smooth enough to ensure

existence of solutions at least on a finite time
interval 0 < t < Tx0,u; h : R

n → R
m is the output

mapping.

Suppose there exist a nonnegative differentiable
storage function V : R

n → R+, V (0) = 0
such that for all admissible inputs u and initial
conditions x(0) = x0 and for all time instants
0 ≤ t < Tx0,u the following dissipation inequality
is valid:

V̇ (x, u) ≤ y�u − H(x) (3)

where the function H : R
n → R is nonnegative

outside some ball:

∃ρ > 0, ∀|x| ≥ ρ =⇒ H(x) ≥ �(|x|) (4)

for some continuous nonnegative function � de-
fined for |x| ≥ ρ. Then the system (2) is called a
semipassive system. This notion was introduced in
(Pogromsky, 1998). Roughly speaking a semipas-
sive system behaves like a passive system (Byrnes



et al., 1991) for sufficiently large |x|. If the func-
tion H is positive outside some ball, i.e. (4) holds
for some continuous positive function �, then the
system (2) is said to be strictly semipassive.

The concept of semipassivity allows one to find
simple conditions which ensure boundedness of the
solutions of interconnected systems. Consider k

(possibly different) systems of the form (2):
ẋj = fj(xj) + gj(xj)uj

yj = hj(xj)
(5)

where j = 1, . . . , k.

Define the symmetric k × k matrix Γ as

Γ =




k∑
i=2

γ1i −γ12 · · · −γ1k

−γ21

k∑
i=1,i �=2

γ2i · · · −γ2k

...
...

. . .
...

−γk1 −γk2 · · ·
k−1∑
i=1

γki




(6)

where γij = γji ≥ 0 and all row sums are zero. The
matrix Γ is symmetric and therefore all its eigen-
values are real. Moreover applying Gerschgorin’s
theorem about localization of eigenvalues (see, e.g.
(Stewart and Sun, 1990)) one can see that all eigen-
values of Γ are nonnegative, that is, the matrix Γ
is positive semidefinite.

There is an important advantage in using semipas-
sive systems. It has been proven in (Pogromsky et
al., 1999) that semipassive systems (5), intercon-
nected through dissipative coupling, have bounded
solutions.

3. PROBLEM STATEMENT

We consider k identical systems of the form
ẋj = f(xj) +Buj

yj = Cxj

(7)

where j = 1, . . . , k, xj(t) ∈ R
n is the state of the

j-th system, uj(t) ∈ R
m is the input, yj(t) ∈ R

m is
the output of the j-th system, f(0) = 0, and B,C

are constant matrices of appropriate dimension.

The connections between the given k systems are
expressed in their input terms as

uj = −γj1(yj −y1)−γj2(yj −y2)− . . .−γjk(yj −yk)
(8)

where γij = γji ≥ 0 are constants such that∑k
j �=i γji > 0 for all i = 1, . . . , k.

The systems (7) coupled through (8) are referred to
as diffusively coupled provided the product CB is
similar to a diagonal matrix with positive entries.
This definition was introduced in (Pogromsky et
al., 1999) and was inspired by the paper of Smale
on interaction between two cells (Smale, 1976). We
will understand a diffusive medium as a dynamical
system consisting of a number of interconnected
identical dynamical systems. Each separate system
has inputs and outputs of the same dimension. The
diffusive coupling is described by a static relation
between inputs and outputs.

Note that if we define the coupling matrix Γ as in
(6), the feedback (8) can be written in a matrix
notation as

u = −(Γ ⊗ Im)y.

with y = col(y1, y2, . . . , ym), u = col(u1, u2, . . . , um).
It is easy to observe that the matrix Γ is singular
(all row sums are zero). Additionally, if there ex-
ists only one eigenvector associated with the zero
eigenvalue of Γ then the network of the diffusively
coupled systems can not be divided into two or
more disconnected networks (the dimension of kerΓ
is the number of disconnected networks). Networks
of this kind will be referred to as diffusive cellular
networks (Pogromsky and Nijmeijer, 2001).

It has been proved in (Pogromsky and Nijmeijer,
2001) that under some additional assumptions if
the lowest nonzero eigenvalue of Γ exceeds some
threshold value the closed loop system (7,8) has
globally asymptotically stable compact subset of
the invariant set

A = {xi ∈ R
n : xi = xj , i, j = 1, . . . , k}

Asymptotic stability of this set is usually referred
to as full synchronization. However, as was shown
in (Pogromsky and Nijmeijer, 2001) the occurrence
of full synchronization in large networks is signif-
icantly limited. Indeed, if all diffusive coefficients



γij are bounded and each cell is connected with no
more than N other cells, then zero is an accumu-
lation point in the spectrum of Γ when k → ∞
(Pogromsky and Nijmeijer, 2001).

In this paper we are focusing on the existence and
stability of linear invariant manifolds of diffusive
cellular networks, a phenomenon usually called
partial synchronization. Recall that for the dynam-
ics

ẋ = F (x),

x ∈ R
n, the linear manifold AD = {x ∈

R
n : Dx = 0} is invariant if Dẋ = 0 when-

ever Dx = 0. Particularly we will study the rela-
tion between the symmetries of Γ and conditions
guaranteeing the existence and stability of linear
invariant manifolds for the system (7,8).

4. SYMMETRIES AND INVARIANT
MANIFOLDS

The matrix Γ defined in (6) describes the geometry
of the extended system as a network of coupled
identical oscillators (7,8). If the network possesses
some symmetry, this information can be retrieved
by the symmetries of Γ. Let Π ∈ R

k×k be a per-
mutation matrix. Their properties are already well
known, so we briefly state that if ε1, ...εk denote
the columns of Ik, a permutation matrix Π is a
matrix obtained from Ik by permuting its columns,
that is, the columns of Π are εα(1), ...εα(k), where
α is a permutation of the set {1, 2, ..., k}. If Sk

is the set of all permutations of {1, 2, ..., k} it is
possible to prove that the set of all permutation
matrices form a group that is isomorphic to Sk

(Rotman, 1994). Permutation matrices are orthog-
onal, i.e. Π�Π = Ik, and they form a group with
respect to the multiplication, so for any two per-
mutation matrices Πi,Πj , ΠiΠj is a permutation
matrix too.

Theorem 1. Suppose there is a permutation Π
commuting with Γ. Then the set ker(Ikn −Π⊗ In)
is an invariant manifold for system (7,8).

Proof: First we rewrite the system equation (7,8)
as

ẋ = F (x) +Gx (9)

where we denoted x = col(x1, . . . , xk), F (x) =
col(f(x1), . . . , f(xk)) and G = −(Ik ⊗ B)(Γ ⊗
Im)(Ik ⊗C) that, after some algebra can be rewrit-
ten as G = −Γ⊗BC. Define the matrix Σ = Π⊗In.
Since [Π,Γ] = 0 it follows that Σ and G commute
as well. Therefore, using (9) we obtain

(Ink − Σ)ẋ = (Ink − Σ)F (x) +G(Ink − Σ)x = 0.
(10)

Since Σ is a permutation matrix, ΣF (x) = F (Σx).
Suppose x ∈ ker(Ikn − Σ), then x = Σx and
therefore F (x) = ΣF (x). Hence, ker(Ikn − Σ) is
an invariant manifold. �

Of course, these are not the only possible linear
invariant subsets that a network of coupled systems
(7,8) may possess. Additional invariant subsets
may arise when, for instance, possible symmetries
of F (x) in (9) (hence f(xj) in (7,8)) are taken
into consideration. A popular case is represented by
the anti-phase synchronization that can happen in
systems whose vector fields are odd functions of the
state vector. In this case we are able to formulate
the following result.

Theorem 2. Suppose there is a permutation Π
commuting with Γ and f displays odd symmetry
(i.e.f(x) = −f(−x)). Then the set ker(Ikn+Π⊗In)
is an additional invariant manifold for system (7,8).

Proof: Using (9) we obtain

(Ink + Σ)ẋ = (Ink + Σ)F (x) +G(Ink + Σ)x = 0.

Suppose x ∈ ker(Ikn + Σ), then x = −Σx and
therefore

(Ink + Σ)F (x) = Σ(F (−x) + F (x)) = 0

Consequently, x ∈ ker(Ikn + Σ) implies (Ink +
Σ)ẋ = 0. �

4.1 Example

Let us consider the example of four coupled sys-
tems (7,8) in a ring, as shown schematically in Fig-
ure 1. In this Figure we have imposed the following
symmetry in coupling constants: γ12 = γ34 = K0,
and γ14 = γ23 = K1. The particular geometry of
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Fig. 1. A network of four coupled identical systems
with symmetric coupling at the opposite sides.

the coupling defines the following coupling matrix:

Γ =




K0 +K1 −K0 0 −K1

−K0 K0 +K1 −K1 0
0 −K1 K0 +K1 −K0

−K1 0 −K0 K0 +K1


 .

The four permutation matrices for which [Π,Γ] = 0
are

Π1 = I4, Π2 =

(
J O

O J

)
,

Π3 =

(
O I2

I2 O

)
, Π4 =

(
O J

J O

)
(11)

where we denoted

J =

(
0 1
1 0

)

and O is the 2×2 zero matrix. Let us analyse what
is the action of these matrices Π. Π1 is the identity,
therefore leaves everything unchanged. The action
of Π2 is to switch simultaneously x1 with x2 and
x3 with x4. One can easily notice from Fig. 1 that
this operation leaves the network unchanged, with
respect to the coupling constants. The same result
holds for Π3 and Π4. From Theorem 1 we derive
that the invariant linear manifolds associated with
Π2, Π3 and Π4 are, respectively,

A2 = {x ∈ R
4n : x1 = x2, x3 = x4}

A3 = {x ∈ R
4n : x1 = x3, x2 = x4}

A4 = {x ∈ R
4n : x1 = x4, x2 = x3}.

The intersection of any two of these linear mani-
folds gives the linear manifold describing full syn-
chronization (i.e. x1 = x2 = x3 = x4).

5. ON STABILITY OF PARTIAL
SYNCHRONIZATION MANIFOLDS

Consider the coupled system (7, 8). Suppose it
forms a diffusive cellular network, that is, there is
only one eigenvector of Γ which corresponds to zero
eigenvalue. We denote eigenvalues of the coupling
matrix Γ as γi, i = 1, . . . , k ordered in increasing
order:

0 = γ1 < γ2 ≤ . . . ≤ γk.

Suppose there is a nontrivial permutation Π, Π �=
Ik commuting with Γ. We are going to investigate
stability of the partial synchronization manifold
ker(Ikn−Π⊗In). Let γ′ be a minimal eigenvalue of
Γ under restriction that the eigenvectors of Γ are
taken from the set range(Ik − Π). It is easy to see
that kerΓ ⊂ ker(Ik − Π) and hence

0 < γ2 ≤ γ′ ≤ γk

Using nonsingularity of CB it is possible to find a
coordinate transformation which brings each free
system from (7) into the form

żj = q(zj , yj)

ẏj = a(zj , yj) + CBuj

where zj ∈ R
n−m, yj , uj ∈ R

m, j = 1, . . . , k. We
now formulate the following result:

Theorem 3. Consider the k smooth diffusively cou-
pled systems (7, 8) with CB similar to a positive
definite matrix. Assume that

A1. Each free system (7) is strictly semipassive
with respect to the input uj and output yj with a
radially unbounded storage function V : R

n → R+.

A2. There exist a C2-smooth positive definite func-
tion V0 : R

n−m → R+ and a positive number α

such that the following inequality is satisfied

(∇V0(z1−z2))� (q(z1, y1) − q(z2, y1)) ≤ −α|z1−z2|2.
for all z1, z2 ∈ R

n−m, y1 ∈ R
m.

Then there exists a positive γ̄ such that if γ′ >

γ̄ the set ker(Ikn − Π ⊗ In) contains a globally
asymptotically stable compact subset.

We can now apply this theorem to the exam-
ple we previously introduced. The eigenvalues
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Fig. 2. Stability of different invariant manifolds.

of the matrix Γ are given by γ1 = 0, γ2 =
min{2K0, 2K1}, γ3 = max{2K0, 2K1}, γ4 = 2(K0+
K1). It is not difficult to compute the value γ′ for
different permutations: γ′ = 2K0 for the permuta-
tion Π2, γ′ = min{2K0, 2K1} for the permutation
Π3 and γ′ = 2K1 for the permutation Π4. Hence,
according to Theorem 3 for large K0 and small K1

one should expect asymptotic stability of the set
A2, for small K0 and large K1 one should expect
asymptotic stability of the set A4, while the full
synchronization occurs for large both K0 and K1

(see Figure 2). The set A3 is stable only as a stable
intersection of A2 and A4, which is the set A.
This theoretical observation is in agreement with
the results of computer simulation which will be
reported elsewhere.

6. CONCLUSION

In this paper we have studied how to derive some
linear invariant subsets of a network of coupled
identical oscillators from the symmetry under per-
mutation of the elements that form the network.
We have presented conditions that ensure stability
of partial synchronization manifolds.
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