
COMPLEXITY REDUCTION IN EXPLICIT LINEAR MODEL
PREDICTIVE CONTROL

Petter Tøndel∗ and Tor A. Johansen∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology, 7491 Trondheim, Norway.

Abstract: Explicit piecewise linear (PWL) state feedback laws solving constrained linear
model predictive control (MPC) problems can be obtained by solving multi-parametric
quadratic programs (mp-QP) where the parameters are the elements of the state vector.
This allows MPC to be implemented via a PWL function evaluation without real-time
optimization. The main drawback of this approach is dramatic increase in the number of
regions in the state space partition as the number of states, inputs and constraints increases.
Here we study two approaches to complexity reduction. First, we consider input trajectory
parameterization which significantly reduces the number of regions. Second, we develop a
search tree that allows PWL function evaluation to be implemented in real time with low
computational complexity.

Keywords: Linear Systems, Predictive Control, Search Methods, Piecewise Linear
Controllers, Optimal Control.

1. INTRODUCTION

Recently, several algorithms for computing explicit
solutions to constrained linear model predictive con-
trol (MPC) problems have been reported (Bemporad
et al.2002, Bemporadet al.2000b, Seronet al.2000,
Bemporadet al. 2000a, Tøndelet al. 2001, Johansen
et al. 2000b, Johansenet al. 2000a). Their main mo-
tivation is that an explicit solution avoids the need
for real-time optimization, and may therefore open
new application areas where MPC has not traditionally
been used due to the need for high sampling rates or
software reliability issues.

In (Bemporadet al. 2002, Bemporadet al. 2000b)
it was recognized that the MPC problem is a multi-
parametric quadratic program (mp-QP), when the
state vector is viewed as a parameter to the problem.
They show that the solution (the control input) is a
piecewise linear (PWL) function on a polyhedral par-
tition of the state space and develop an mp-QP algo-
rithm to compute this function. In (Tøndelet al.2001)
a more efficient mp-QP solver is developed by in-
ferring additional information about neighboring re-
gions during the iterative solution. Alternative formu-
lations and solutions based on mp-LP as well as exten-
sions to hybrid systems using multi-parametric mixed-
integer LP can be found in (Bemporadet al. 2000a).
In (Johansenet al. 2000b, Johansenet al. 2000a)

1 Email:Tor.Arne.Johansen@itk.ntnu.no

a different solution approach is taken, starting with
the Hamilton-Jacobi-Bellman equation for the optimal
control problem. The solution strategy allows sub-
optimality and complexity reduction to be introduced
by pre-determining a small number of sampling in-
stants when the active set is allowed to change on the
horizon. An alternative sub-optimal approach was in-
troduced in (Bemporad and Filippi 2001) where small
slacks are introduced on the optimality conditions and
the mp-QP algorithm (Bemporadet al.2002, Bempo-
radet al. 2000b) is modified for the relaxed problem.
This leads to reduced computational complexity and
reduced complexity of the solution (in terms of less
regions in the partition). Since in MPC we only need
the first sample of the control for implementation,
one may in many cases recognize several neighboring
regions where the solution leads to the same locally
linear control law. Whenever the union of such polyhe-
dra remains polyhedral one may use this to reduce the
number of regions required for implementing the con-
trol law (Bemporadet al.2000b). However, the recog-
nition of such regions is hard (Bemporadet al.2001).

The present paper contains two main contributions;
First we study how one of the standard complexity
reduction methods from conventional MPC can be
applied also in the explicit MPC case, namely the idea
of input trajectory parameterization. Typically this is
implemented by input blocking, i.e. pre-determining
a small number of sampling instants when the control
input is allowed to change. Second, it is studied how to

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

efficiently evaluate the PWL function that defines the
explicit solution. This is non-trivial since the number
of regions in the partition may be large, see (Borrelliet
al. 2001) for an alternative approach that exploits the
convexity of the cost function. Here, we develop a bi-
nary search tree to be used in the real-time implemen-
tation to determine with logarithmic worst-case com-
putational complexity in which polyhedral region an
arbitrary state belongs. A related approximate search
tree based mp-QP approach is suggested in (Johansen
and Grancharova 2002).

2. LINEAR MPC WITH CONSTRAINTS

The main aspects of formulating a linear MPC prob-
lem as a multi-parametric QP will, for convenience, be
repeated here. See (Bemporadet al. 2002) for further
details. Consider the linear system

x(t + 1) = Ax(t) + Bu(t) (1)

wherex(t) ∈ Rn is the state variable,u(t) ∈ Rm is
the input variable,A ∈ Rn×n, B ∈ Rn×m and(A,B)
is a controllable pair. For the currentx(t), MPC solves
the optimization problem

min
U,{ut,...,ut+M−1}

J(U, x(t)) (2)

such thatxt|t = x(t) and

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, 1, ...,M − 1, (3)
ut+k = ut+k−1, M ≤ k ≤ N − 1
xt+k+1|t = Axt+k|t + But+k, k ≥ 0
yt+k|t = Cxt+k|t, k ≥ 0

The cost function is given by

J(U, x(t)) =
N−1∑

k=0

(
xT

t+k|tQxt+k|t + uT
t+kRut+k

)

+ xT
t+N |tPxt+N |t (4)

with symmetric R > 0, Q ≥ 0, P > 0. The
final cost matrixP is usually calculated from the
algebraic Riccati equation with the assumption that no
constraints are active fork ≥ N . This problem can by
completing squares be reformulated as

Vz(x(t)) = min
z

1
2
zT Hz (5)

subject to Gz ≤ W + Sx(t) (6)

wherez , U+H−1FT x(t), U =
[
uT

t , ..., uT
t+N−1

]T
.

Notice thatH > 0 sinceR > 0. The vectorx(t)
is the current state, which can be treated as a vector
of parameters. A similar reformulation can also be
found for the tracking problem or when infeasibility
relaxations are included, (Bemporadet al.2002). The
number of inequalities is denotedq and the number
of free variables isnz = m · N . Then z ∈ Rnz ,
H ∈ Rnz×nz , G ∈ Rq×nz , W ∈ Rq×1, S ∈ Rq×n.
The solution of the optimization problem (5)-(6) can
be found in an explicit formz∗ = z∗ (x(t)). Bem-
poradet al. (2002) showed that the solutionz∗(x(t))
(andU∗(x(t))) is a continuous PWL function ofx(t)
defined over a polyhedral partition of the parameter
space, andVz(x(t)) is a convex (and therefore contin-
uous) piecewise quadratic function.

3. MULTI-PARAMETRIC QUADRATIC
PROGRAMMING

As shown in (Bemporadet al. 2002), the mp-QP
problem (5)-(6) can be solved by applying the Karush-
Kuhn-Tucker (KKT) conditions

Hz + GT λ = 0, λ ∈ Rq (7)

λi

(
Giz −W i − Six

)
= 0, i = 1, ..., q (8)

λ ≥ 0 (9)
Gz −W − Sx ≤ 0 (10)

For ease of notation we writex instead ofx(t). Super-
script i on some matrix denotes theith row. SinceH
has full rank, (7) gives

z = −H−1GT λ (11)

Assume for the moment that we know which con-
straints are active at the optimum for a givenx, and let
λ̃ be the Lagrange multipliers of the active constraints,
λ̃ ≥ 0. We can now form matrices̃G, W̃ andS̃ which
contains the rowsGi, W i and Si corresponding to
the active constraints. Assume thatG̃ has full row
rank, such that the rows of̃G are linearly indepen-
dent. For the active constraints, (8) and (11) gives
−G̃H−1G̃T λ̃− W̃ − S̃x = 0, which leads to

λ̃ = −(G̃H−1G̃T)−1(W̃ + S̃x). (12)

Eq. (12) can now be substituted into (11) to obtain

z = H−1G̃T (G̃H−1G̃T)−1(W̃ + S̃x). (13)

We have now characterized the solution to (5)-(6) for
a given optimal active set, and a fixedx. However, as
long as the active set remains optimal in a neighbor-
hood ofx, the solution (13) remains optimal, whenz
is viewed as a function ofx. Next, we characterize the
region where this active set remains optimal. First,z
must remain feasible (10)

GH−1G̃T (G̃H−1G̃T)−1(W̃+S̃x) ≤ W+Sx. (14)

Second, the Lagrange multipliersλ must remain non-
negative (9)

−(G̃H−1G̃T)−1(W̃ + S̃x) ≥ 0. (15)

The equations (14) and (15) describe a polyhedron in
the state space. This region is denoted as thecritical
region CR0 corresponding to the given set of active
constraints. Bemporadet al.(2002) showed that when
you pick an arbitraryx0 ∈ X and let(z0, λ0) be the
corresponding values satisfying the KKT conditions,
then one can find the critical regionCR0 from (14)
and (15). This region is a convex polyhedral set and
represents the largest set of parametersx such that
the combination of active constraints at the minimizer
remains optimal.

Algorithms have been developed by (Bemporadet
al. 2002, Tøndelet al. 2001) for constructing polyhe-
dral partitions of the state space that explicitly defines
the PWL functionẑ∗(x). Below, we give a simpli-
fied description of the algorithm, while a complete
description and analysis that also covers degeneracy
and infeasibility is found in (Tøndelet al.2001):

Algorithm 1 (mp-QP)

1. Initialize the list of unexplored active setsU with an
arbitrary (but feasible) active set. Initialize the list of
explored active setsE to be empty.

−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Partition of state space

Fig. 1. Polyhedral partition of state space,N = 10.

2. Choose an arbitrary active set inU , compute the
associated linear state feedback (13), Lagrange multi-
plier (12) and polyhedral regionCR0 defined by (14)
and (15). Remove the active set under consideration
from U and add it toE .

3. If CR0 = ∅, go to step 2, otherwise go to step 4.

4. For each facet of the corresponding polyhedral rep-
resentation determine the active set in the neighboring
region as described in detail in (Tøndelet al. 2001).
For each new active set (i.e. not already inE ∪U), add
it to U .

5. If U is non-empty, go to 2, otherwise terminate.

Example 1.Consider the double integrator (Johansen
et al.2000b)

A =
[

1 Ts
0 1

]
, B =

[
T 2

s
Ts

]

where the sampling intervalTs = 0.05, and consider
the MPC problem with cost matricesQ = diag(1, 0),
R = 1, and the matrixP given as the solution of
the algebraic Riccati equation. The constraints in the
system are−0.5 ≤ x2 ≤ 0.5 and−1 ≤ u ≤ 1. Figure
1 shows the partition for horizonN = 10, and Table 1
summarizes the complexity and off-line computation
times of the exact solutions forN = 1 to N = 15.
Figure 1 shows that most of the regions in the partition
are very small. This is unfortunate when considering
the on-line processing time required to determine in
which polyhedral critical region an arbitrary statex
belongs.

Table 1. Number of regions and off-line
computation times (800 MHz CPU) for ex-

act solutions.

HorizonN RegionsNc Off-line CPU time(s)
1 5 0.1
2 13 0.2
3 23 0.3
4 35 0.6
5 51 1.0
6 71 1.6
7 95 2.5
8 123 3.7
9 155 5.3
10 191 7.3
11 231 9.7
12 277 13.0
13 325 17.3
14 379 21.7
15 437 27.0

4. INPUT TRAJECTORY PARAMETERIZATION

The input trajectory is defined by thenz elements
of the vectorU . The input is allowed to change its
value at every sampling instant. The main idea of input
trajectory parameterization is to introduce a class of
input trajectories with less degrees of freedom in order
to reduce the dimensions of the optimization problem
and thereby reducing the computational complexity.
This is implemented in some form in most practical
MPC algorithms. With a discrete-time formulation the
most common approach is to pre-determine a number
of sampling instants when the control input is not
allowed to change, i.e.

U = T Û (16)

wheredim Û < dim U . For example, ifN = 5,m =
1 and we require that the input is kept constant for the
first two samples and also for the three last samples,
we haveÛ = (û1, û2)T and

T =
(

1 1 0 0 0
0 0 1 1 1

)T

Hence, the five-sample trajectory is parameterized by
2 parameters. Due to the receding horizon implemen-
tation of MPC, the implemented control input can
change every sample and the degree of sub-optimality
can usually be kept fairly small, especially for open-
loop stable plants. It is also experienced that such
an input trajectory parameterization may be benefi-
cial from a robustness point of view, i.e. the closed
loop performance is less sensitive to modelling error.
The approach can be implemented with only trivial
modification of the data input and output to the mp-
QP solver. The explicit solution remains PWL and
continuous as a function of the statex.

Example 1, continued.The partition of the double
integrator is now computed using parameterization of
the input, with 1, 2, 3 and 4 parameters and horizon
15. The partitions are shown in Figure 2. Table 2
shows the errors in the control input, whereemax is
the maximal error in the control input compared to
the exact solution, andeav is the average error in
the control input. We conclude that it is important
to choose the number of parameters large enough to
get an acceptable result. Parameterization of the input
has reduced the number of regions while introduced a
small degree of sub-optimality.

Table 2. Errors using input blocking with 1-
4 parameters, compared to exact solution.

Number of Offline Regions
Parameters CPU time(s) Nc emax eav

1 0.1 7 0.87 0.2481
2 0.3 17 0.30 0.0108
3 0.4 25 0.18 0.0056
4 0.7 41 0.09 0.0024

Example 2. A laboratory model helicopter (Quanser
3-DOF Helicopter) is sampled with intervalT =
0.01s, and the following state-space representation is
obtained

A =




1 0 0.01 0 0 0
0 1 0 0.01 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0.01 0 0 0 1 0
0 0.01 0 0 0 1




−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Partition of state space

−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Partition of state space

−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Partition of state space

−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

Partition of state space

Fig. 2. Polyhedral partition of state space with horizon
15, using 1, 2, 3 and 4 parameters (from top to
bottom).

B =




0 0
0.0001 −0.0001
0.0019 0.0019
0.0132 −0.0132

0 0
0 0




The states of the system arex1 - elevation,x2 - pitch
angle,x3 - elevation rate,x4 - pitch angle rate,x5 -

0 1 2 3 4 5 6 7
−0.5

0

0.5

x
1

0 1 2 3 4 5 6 7
−0.5

0

0.5

x
3

0 1 2 3 4 5 6 7

0

0.5

1

x
5

s

N = 1
N = 50, 1 par.
N = 3
N = 50, 3 par.

Fig. 3. Statesx1, x3 andx5, i.e. the elevation and its
derivative and integrated error.

integral of elevation error, andx6 - integral of pitch
angle error. The inputs to the system areu1 - front
rotor voltage andu2 - rear rotor voltage. The system
is to be regulated to the origin with the following
constraints on the inputs and pitch and elevation rates
−1 ≤ u1 ≤ 3, −1 ≤ u2 ≤ 3, −0.44 ≤ x3 ≤ 0.44,
and−0.6 ≤ x4 ≤ 0.6. The LQ cost function is given
by Q = diag(100, 100, 10, 10, 400, 200), R = I2×2,
andP is given by the algebraic Riccati equation. The
following four cases are considered:

(1) N = 1, no input parameterization.
(2) N = 50, input parameterization, 1 parameter.
(3) N = 3, no input parameterization.
(4) N = 50, input parameterization, 3 parameters.

The MPC controller was computed using the mp-
QP Algorithm of (Tøndelet al. 2001) and Table 3
shows the number of regions and computation times
in each case. Figures 3-5 show results of simulations
starting in x(0) = (0.5, 0.5, 0, 0, 0, 0)T . From the
accumulated cost in Figure 6 one can see that the
controllers using a horizon of50 and parameterization
of the input definitely outperform the controllers with
horizons of1 and3.

Table 3. Number of regions and off-line
computation times for helicopter example.

Case RegionsNc Off-line CPU time (s)
1 33 2
2 49 3
3 2528 703
4 3464 1585

5. REAL-TIME SEARCH TREE

The real-time implementation of explicit MPC corre-
sponds to evaluating the pre-computed PWL mapping
from x to u. This amounts to first determining in
which critical region where the current statex be-
longs, and then computing the control input using the
pre-computed affine state feedback. The main problem
is to minimize the number of linear inequalities to
evaluate in order to determine which critical region
x belongs. An efficient way to exploit the polyhedral
structure of the partition is to build off-line a binary

0 1 2 3 4 5 6 7
−0.5

0

0.5

x
2

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

x
4

0 1 2 3 4 5 6 7

0

0.5

1

x
6

s

N = 1
N = 50, 1 par.
N = 3
N = 50, 3 par.

Fig. 4. Statesx2, x4 andx6, i.e. the pitch angle and its
derivative and integrated error.

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

u 1

N = 1
N = 50, 1 par.
N = 3
N = 50, 3 par.

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

u 2

s

Fig. 5. Control inputsu1 andu2.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
x 10

4

C
os

t

N = 1
N = 50, 1 par.
N = 3
N = 50, 3 par.

Fig. 6. Accumulated LQ cost.

search tree (for on-line use) where at each level one
linear inequality is evaluated. More precisely, consider
the set of polyhedral critical regionsX1, X2, ..., XN
that form a partition of the polyhedronX ⊂ Rn. Let
all hyper-planes defining the polyhedra in the partition
be denotedaT

j x = bj for j = 1, 2, ..., L. Define
dj(x) = aT

j x − bj and represent the polyhedronXi

through its index setIi such that

Xi = {x | dj(x) ≤ 0 for all j ∈ Ii} (17)

The idea is to construct a balanced binary search tree
such that for a givenx ∈ X, at each node we will
evaluate one affine functiondj(x) and test its sign.
Based on the sign we select the left or right sub-tree.
Traversing the tree from the root to a leaf node one
will pass through nodes corresponding to all indices in
Ii for somei, and one may terminate the search with
the indexi of the polyhedronXi wherex belongs. It
is desirable to design a tree of minimum depth such
that we minimize the number of extra nodes (with
inequalities not needed in the representation ofXi) we
have to pass through to determineXi. The following
algorithm will construct a binary search-tree:

Algorithm 2 (Build search tree)

1. The root node of the tree is initialized asN1 :=
(∗, I), where the first element (∗ means uninitialized)
is the index of the splitting hyperplane, and the second
element is the index set of all the critical regions.

2. The set of unexplored nodes is initialized asU :=
{N1}.
3. Select any unexplored nodeNk ∈ U . If no such
node exist, the algorithm terminates. Otherwise, re-
move the node fromU and go to step 4.

4. Select a hyperplaneaT
j x = bj from the set of linear

inequalities that define all the polyhedra of all critical
regionsXi, i ∈ Ik and letNk := (j, Ik).

5. LetY ⊂ X denote the polyhedral set defined by the
inequalities of all nodes encountered when traversing
the tree from the root nodeN1 to the nodeNk. Let
Y +

k := Y ∩ {x ∈ X|dj(x) ≥ 0} andY −
k := Y ∩

{x ∈ X|dj(x) ≤ 0}. Let I+ := ∅ andI− := ∅.

6. For all i ∈ Ik, addi to I+ if Xi ∩ Y +
k 6= ∅, and

addi to I− if Xi ∩ Y −
k 6= ∅.

7. If φm(I+)/φm(Ik) ≥ α or φm(I−)/φm(Ik) ≥ α,
where0.5 < α < 1 is some constant, go to step 4.

8. Create two new nodesN+ = (∗, I+) andN− =
(∗, I−). Make these nodes the child nodes ofNk
corresponding to positive and negativedj(x), respec-
tively.

9. If φm(I+) 6= 1, addN+ to U .

10. If φm(I−) 6= 1, addN− to U .

11. Go to step 3.

The notationφm(I) means the number solutions in
I having the same firstm elements. The number of
nodes and depth of the tree are strongly dependent on
which hyperplanes are selected in step 4, and the value
of the parameterα in step 7. In the examples below we
have selected hyper-planes randomly withα = 0.75,
but there will obviously exist better heuristics. If no
hyperplane exist such that the loop between steps
4 and 7 terminates,α is increased. Due to steps 9
and 10 we allow the leaf nodes of the search tree to
define a set of regions (rather than a unique region)
where the firstm elements of themN -dimensional
solution vector are the same. This is sufficient in MPC
where we only need to implement the first sample of
the control input trajectory. The computationally most
complex operation in Algorithm 2 is in step 6 where
the emptiness of some polyhedral sets are tested by
solving LPs.

Table 5. Double integrator example: Comparison of real-time computational complexity of
search tree, sequential search and real-time optimization. The numbers reported in the table

are the estimated number of arithmetic operations per sample.

N quadprog quadprog e04naf e04naf tree Sequential Sequential e04naf e04naf
max mean max mean max max mean max, warm mean, warm

1 4235 4029 17 17 24 146 77 17 16
2 5171 4382 59 52 29 370 164 59 43
3 6699 4962 150 124 34 650 266 150 94
4 9134 5990 317 249 39 986 416 317 171
5 13660 7555 584 449 44 1434 607 484 288
6 18013 10016 975 727 49 1994 870 687 434
7 25226 12974 1514 1126 49 2666 1144 1220 644
8 34762 16787 2225 1632 54 3450 1438 1713 942
9 47255 23091 3132 2284 54 4346 1936 2646 1234
10 63220 28382 4259 3081 59 5354 2204 3059 1701
11 82664 36985 5630 3987 59 6474 2684 3694 2178
12 107137 48275 7269 5103 59 7762 3327 5253 2711
13 136736 61993 9200 6687 64 9106 3939 5820 3370
14 171596 69581 11447 8088 64 10618 3970 7919 4491
15 213284 93931 14034 10052 64 12242 5129 8634 5126

Table 4. Characteristics of the search trees
constructed for the double integrator.

HorizonN RegionsNc Nodes Depth Arith. ops.
1 5 13 4 24
2 13 29 5 29
3 23 63 6 34
4 35 97 7 39
5 51 117 8 44
6 71 173 9 49
7 95 241 9 49
8 123 397 10 54
9 155 421 10 54
10 191 493 11 59
11 231 661 11 59
12 277 775 11 59
13 325 901 12 64
14 379 1087 12 64
15 437 1195 12 64

Example 1, continued.Consider the PWL solution
for the double integrator, see also Table 1. In Table
4 the results using Algorithm 2 are shown. In gen-
eral, the worst-case number of arithmetic operations
required to search the tree and evaluate the PWL func-
tion is (2n + 1)D + 2nm, whereD is the depth of the
tree,m is the number of inputs andn is the number of
states. At each node there aren multiplications,n ad-
ditions and 1 comparison. Moreover,2nm operations
are required to evaluate the affine state feedback in the
region. We observe from Table 4 that the computa-
tional complexity seems to increase withO(log Nc),
whereNc is the number of critical regions. We note
that although the computational complexity increases
slowly with the number of critical regions, the mem-
ory requirement for storing the PWL function param-
eters and the nodes increases rapidly. Due to random-
ness in step 4 of the algorithm, the search tree will
be different at each execution, typically causing the
numbers in Table 4 to vary by less than 15 % . Table
5 lists the estimated number of arithmetic operations
required by the search tree as a function of the horizon
N , and compares with a sequential search, as well
as the quadratic programming algorithmquadprog
(MATLAB) and e04naf (NAG), both with warm and
cold start. In all cases, there is a significant difference
in favor of the search tree implementation.

6. CONCLUSION

It is shown empirically that the use of input trajec-
tory parameterization is a useful method for reducing
the computational complexity of explicit MPC based

on multi-parametric quadratic programming. An al-
gorithm for efficient real-time evaluation of the PWL
explicit solution is also provided.

7. REFERENCES

Bemporad, A. and C. Filippi (2001). Suboptimal ex-
plicit MPC via approximate quadratic program-
ming. In: Proc. IEEE Conf. Decision and Con-
trol, Orlando. pp. FrP08–5.

Bemporad, A., F. Borrelli and M. Morari (2000a). Op-
timal controllers for hybrid systems: Stability and
piecewise linear explicit form. In:Proc. Confer-
ence on Decision and Control.

Bemporad, A., K. Fukuda and F. D. Torrisi (2001).
Convexity recognition of the union of polyhedra.
Computational Gemometry18, 141–154.

Bemporad, A., M. Morari, V. Dua and E. N. Pis-
tikopoulos (2000b). The explicit solution of
model predictive control via multiparametric
quadratic programming. In:Proc. American Con-
trol Conference, Chicago. pp. 872–876.

Bemporad, A., M. Morari, V. Dua and E. N. Pis-
tikopoulos (2002). The explicit linear quadratic
regulator for constrained systems.Automatica
38, 3–20.

Borrelli, F., M. Baotic, A. Bemporad and M. Morari
(2001). Efficient on-line computation of explicit
model predictive control. In:Proc. IEEE Conf.
Decision and Control, Orlando. pp. TuP11–2.

Johansen, T. A. and A. Grancharova (2002). Approx-
imate explicit model predictive control imple-
mented via orthogonal search tree partitioning.
In: Preprints, IFAC World Congress, Barcelona.

Johansen, T. A., I. Petersen and O. Slupphaug (2000a).
Explicit suboptimal linear quadratic regulation
with input and state constraints. Technical Report
STF72-A00303. SINTEF.

Johansen, T. A., I. Petersen and O. Slupphaug (2000b).
On explicit suboptimal LQR with state and input
constraints. In:Proc. IEEE Conf. Decision and
Control, Sydney. pp. TuM05–6.

Seron, M., J. A. De Dona and G. C. Goodwin (2000).
Global analytical model predictive control with
input constraints. In:Proc. IEEE Conf. Decision
and Control, Sydney. pp. TuA05–2.

Tøndel, P., T. A. Johansen and A. Bemporad (2001).
An algorithm for multi-parametric quadratic pro-
gramming and explicit MPC solutions. In:Proc.
IEEE Conf. Decision and Control, Orlando.
pp. TuP11–4.

