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Abstract: This paper deals with the adaptive control of linearly parameterized discrete-
time nonlinear system in the presence of bounded disturbances and unmodeled dynamics. 
A new adaptive law is presented. No a priori knowledge about the bounds on both the 
plant parameters and unmodeled uncertainty is required to implement the estimation 
algorithm. The adaptive scheme is free from singularity. This is achieved through the use 
of some time-varying adaptation gain. It is established that if the plant model nonlinearity 
is sector-bounded then the BIBO stability of the closed-loop system will be guaranteed. 
Simulation results are given to demonstrate the performance of the adaptive controller. 
Copyright © 2002 IFAC 
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1. INTRODUCTION 

Adaptive control of nonlinear systems has been a 
subject of very intense research activity during the 
last decade because of their practical importance. 
Substantial breakthroughs have been achieved in 
theoretical frameworks, and new stability results 
have been obtained for several classes of adaptive 
nonlinear continuous-time systems represented by 
some nonlinear models with unknown parameters 
appearing linearly and nonlinearly; see, e.g., 
(Annaswamy, et al., 1998; Kosmatopoulos and 
Ioannou, 1999; Krstic, et al., 1995; Lozano and 
Brogliato, 1992; Pomet and Praly, 1992; Sastry and 
Isidori, 1989; Taylor, et al., 1989) and references 
therein. On the other hand, very few similar works 
are available in the literature that address the stable 
adaptive controller design for discrete-time systems 
with nonlinearities (Agarwal and Seborg, 1987; Chen 
and Khalil, 1995; Fabri and Kadirkamanathan, 1998; 
Jagannathan and Lewis, 1996; Kanellakopoulos, 
1994; Lin and Yong, 1992; Song and Grizzle, 1993;  
Spooner, et al., 1996; Xie and Guo, 1999; Yeh and 
Kokotovic, 1995).This is due to the fact that the 
difficulties pointed out in Kanellakopoulos (1994), 

Song and Grizzle (1993) and Yeh and Kokotovic 
(1995) occur in discrete-time case. In particular, 
Lyapunov-based approach which has usefully been 
employed in the continuous-time case to establish the 
global stability, is not directly appropriate in its 
discrete-time counterpart (Kanellakopoulos, 1994).  

Most of paper devoted to the adaptive nonlinear 
discrete-time control of linear-in-the-parameters (LP) 
systems guarantee global stability under the 
assumption that the nonlinearities depending on past 
outputs have a linear growth rate. Using the Key 
Technical Lemma (Goodwin and Sin, 1984, Lemma 
6.2.1), it is shown by Kanellakopoulos (1994) that a 
certainty-equivalence controller combined with the 
standard recursive least-squares (RLS) estimator will 
ensure the global stability of simple adaptive 
nonlinear discrete-time LP system if the nonlinearity 
is sector-bounded. This Lemma is also applied in 
Yeh and Kokotovic (1995) to prove that all signals in 
the closed loops of several classes of nonlinear 
discrete-time LP control systems utilizing some 
gradient-like and RLS update laws remain bounded if 
the nonlinearities satisfy certain growth conditions. 

To prevent the instability of linear discrete-time 
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adaptive control systems subject to bounded 
disturbances and unmodeled dynamics, dead zone is 
often incorporated in adaptive law; see, e.g., 
(Goodwin and Sin, 1984; Ortega and Lozano, 1987). 
The implementation of standard dead zone approach 
requires the knowledge of the upper bounds on  
disturbances and on unmodeled dynamics term. 
However, such knowledge can hardly be obtained in 
practice. In order to overcome this difficulty, a time-
varying dead-zone adaptive law applied to the 
adaptive control of linear discrete-time systems  with 
bounded disturbances having unknown bounds has 
been developed by Feng (1994). Unfortunately, the 
algorithm of Feng (1994) needs the a priori 
information about a lower bound on the high 
frequency gain and its sign, and this information is 
necessary to avoid singularity in adaptive control 
law. An alternative estimation scheme reported in 
Zhiteckij (1997) differs from the one used in Feng 
(1994) in that it does not require any knowledge 
regarding the high frequency gain and its sign as 
well. Nevertheless, his control law is free from 
singularities. Another adaptive algorithm for the 
singularity-free control of a continuous-time 
nonlinear system without requiring any a priori 
information on the plant parameters is proposed by 
Lozano and Brogliato (1992). However, they study 
the case when the both disturbance and unmodeled 
dynamics absent. It is not yet clear how their results 
might be extended to the discrete-time systems with 
the unmodeled uncertainties whose bounds are 
unknown. On the other hand, to the best of author's 
knowledge, there are no adaptive algorithms 
available in the literature that allow to cope with 
singularity and to achieve the stability of nonlinear 
discrete-time system in the presence of bounded 
disturbance and unmodeled dynamics with unknown 
bounds. 

In this paper, an adaptive nonlinear discrete-time LP 
control system with parametric and nonparametric 
uncertainties is designed and analyzed. The proposed 
approach is based on combining some key ideas 
employed in Zhiteckij (1997; 1999). It involves the 
use of a new adaptive law for estimating the plant 
parameters and the both bounds on unmodeled 
uncertainty. The basic feature distinguishing this law 
from existing adaptive schemes is that it requires 
neither a priori information regarding the bounds on 
unmodeled plant uncertainty nor a priori information 
with respect to the constraints on some bounded 
region to which the plant parameters belong. To 
avoid the singularity in control law, a time-varying 
adaptive gain is incorporated in the estimator. The 
main effort is focused on establishing the stability 
properties of resulting closed-loop system. 

 

2. STATEMENT OF THE PROBLEM 

The plant to be controlled is a nonlinear single-input 
single-output (SISO) discrete-time system described 
by 

tttt vbuxfy ++= −− 11 )( ,        (1) 

where R∈ttt vuy ,,  are the measurable output, 
control input and unmeasured external disturbance, 
respectively (integer t  denotes the discrete time). 

RR →• Nf :)(  represents a smooth nonlinear 

function depending on the vector T
1−tx  

],,[ 1 Ntt yy −−= L  of N  past outputs. b  is a constant 
but unknown nonzero scalar. It is assumed that )(•f  
is unknown but this function can be approximated 

within NR  by suitable ),(ˆ θxf  defined as follows: 

)(),(ˆ T xxf φθ=θ ,  (2) 

where dR∈θ  represents some unknown parameter 

vector and dNx RR →φ :)(  is a vector function 
whose components are the group of d basis functions 
chosen by the designer. 

Using (2), equation (1) may be rewritten in the form 

ttttt vbuxy ∆+++φθ= −− 11
T )( ,   (3) 

where 

),(ˆ)( 11 θ−− −=∆ ttt xfxf             (4) 

denotes the approximation error arising due to the 
mismatch between true plant (1) and its LP model 
that exploits (2). In (3), t∆  plays the role of an 
unmodeled dynamics. 

The following assumptions regarding the plant model 
in equations (3), (4) will be made. 

(A1) )(xφ satisfies the sector condition 

0212)( kxkx +≤φ   (5) 

for some nonnegative 10 ,kk , where 2•  denotes the 
Euclidean vector norm. 

(A2) The disturbance tv  is bounded by an  unknown 
ε ,  

ε≤∞tv ,   (6) 

where ∞tz  denotes the ∞l -norm of any function 

RZ →+:tz  defined as ttt zz ∞<≤∞ = 0sup . 

(A3) The modeling error t∆  given by (4) is bounded 
in the ∞l -norm by a known function tg  multiplied 
by an unknown but bounded variable tδ , i.e., 

ttt gδ≤∆ ∞ ,           (7a) 

where 

       ∞<∞tg ,   ∞<≤δ ∞ Dt   (7b) 



 

 

with some unknown positive constant D . 

Remark 1. Note that assumption (A1) implying that 
the nonlinearity )( txφ  has a growth rate not faster 
than linear, i.e., 

(C1)  )()( tt xOx =φ  as ∞→tx   

is essentially used later to derive the stability result. 
Of course, condition (C1) is restrictive too, and one 
would like to relax this condition replacing it by 

(C2)  )()( βφ tt xOx =  as ∞→tx   

with some 1>β . Recently, the work of Xie and Guo 
(1999) who dealt with the standard RLS adaptive 
laws applied to nonlinear LP discrete-time systems in 
the presence stochastic disturbances { }tν  shed some 
light on such a possibility. They theoretically argued 
that in the multiparameter case )1( >d  subjected to 
(C2), the global stabilization of the system of form 
(3) with 1=b , 0≡∆ t  and a Gaussian white noise tν  
is impossible, in general, if 1>β . However, the 
question of how far can one go from (C1) to (C2) in 
the case of non-stochastic bounded tν  when b  is 
unknown remains open up to now. 

Remark 2. Assumption (A3) is first made by Yao and 
Tomizuka (1997) in their Assumption 1 to study a 
class of nonlinear continuous-time adaptive systems 
with bounded unmodeled uncertainties.            ■ 

Let )const( ≡∗∗ yy  be a given set-point for output 

ty . The problem is to design an adaptive controller 
such that, in spite of the modeling error t∆ , the 
resulting closed-loop control system is bounded input 
- bounded output (BIBO) stable, and the output error 

tt yye −= ∗    (8) 

is close as possible to its minimum value. 
 

3. ADAPTIVE CONTROL ALGORITHM 

Using the standard certainty equivalence principle, 
one can conclude from equation (4) together with   
(6) - (8) that if θ  and b  are known (nonadaptive 
case), a controller whose output tu  is determined as 

)]([ T1
tt xybu φθ−= ∗−          (9) 

ensures 

Dge tt +ε≤∞ .  (10) 

(Note that the upper bound on ∞te  specified by 
(10) is its minimum.) Based on equation (9), a natural 
choice of the adaptive control law for the case when 
θ  and b  are indeed unknown is 

)]([ T1
tttt xybu φθ−= ∗− ,       (11) 

where tb  and tθ  are the current estimates of b  and 
θ , respectively. It is clear that the condition 

tbt ∀≠ 0 .   (12) 

must be satisfied in order to avoid any singularity in 
such an adaptive control scheme. 

Utilizing the approach of Zhiteckij (1997; 1999), the 
adaptive algorithm for estimating the parameter 
vector 

],[)( TT
0 tt bt θ=θ    (13) 

is derived by recursive solving the inequalities 

+
−− ∈+ε≤−φθ− ZtgDubxy tttt ,ˆˆˆ)(ˆ
11

T  (14) 

with respect to the unknown extended vector 

]ˆ,ˆ,ˆ[~̂ T
0

T
0 εθ=θ D . These inequalities are compatible 

because they are satisfied for 00
~~̂ θ=θ , where 

],,[~ T
0

T
0 εθ=θ D . (This fact follows directly from 

equation (3) together with (6) and (7).) 

Introduce the dead zone function proposed by 
Zhiteckij (1997; 1999) 



 >≥−

=
otherwise0

)0(if
),( 000

00
DDeeD

Def    (15) 

and define the parameter identification error  

111
T

1 )( −−−− −φθ−= tttttt ubxye .     (16) 

Let 

]1,,sign[ T
1

T
tttt gew −χ=   (17) 

with 

]),([ 11
TT

1 −−− φ=χ ttt ux .  (18) 

It can be shown that the estimate vector 

],),([)(
~ T

0
T
0 ttDtt εθ=θ        (19) 

obtaining as the recursive solution of (14) becomes 

t
t

t
t w

w

tDef
tt

2
2

00
00

))(,(
)1(

~
)(

~
γ+−θ=θ , (20) 

where 

ttt gDtD 110 )( −− +ε=   (21) 

and tγ  is a tuning factor specified later. Equation 
(20) together with (17), (19) yield straightforward the 
estimation algorithms for updating the parameter 
vector 
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00
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−

χ
+χ+

γ+−θ=θ  

(22) 

defined by (13), and the estimates 

t
tt

t
ttt g

g

tDef
DD

22
21

00
1

1

))(,(

+χ+
γ+=

−
−        (23) 

22
21

00
1

1

))(,(

tt

t
ttt

g

tDef

+χ+
γ+ε=ε

−
−        (24) 

utilized for calculating the current size )(0 tD  of 
dead zone (15). 

The tuning factor tγ  is chosen from the range 

20 maxmin <≤≤< γγγ t   (25) 

so that the components of )(0 tθ  in (13) including tb  
does not go to zero. Such a choice is always possible 
due to the fact that, in equation (22), )(0 tθ  is the 
linear function in tγ . It allows to meet requirement 
(12), and thus to overcome the singularities which 
might arise in control law (11). Note that similar tool 
has already been used by Ortega and Lozano (1987) 
in their linear adaptive control system with bounded 
disturbances whose bounds are known; see also 
(Goodwin and Sin, 1984). 

Remark 3. In contrast to Zhiteckij (1997; 1999) no 
projection is needed to implement adaptive law (22). 
 

4. CONVERGENCE AND STABILITY ANALYSIS 

The preliminary basic result establishing the 
convergence of the adaptive estimator constructed 
above is given in the following lemma. 

Lemma. The adaptive law defined by equations (22)-
(25) together with (15)-(18) and (21) possesses the 
properties that: 

a) the sequences }{ tD  and }{ tε  are bounded and 
converge to some finite ∞<∞D  and ∞<ε∞ , 
respectively, as t  tends to the infinity; 

b) 22122
21

00

)1(

))(,(
l

g

tDef

tt

t ∈
+χ+ −

 

provided that the plant of form (3) satisfies the 
assumptions (A1) and (A3) and ∞<θ 20 )0(~  .  

Proof. The proof follows closely the steps used in 
proving the similar result in Feng (1994). Defining a 
Lyapunov-like function  

2
200 )(~~ tVt θ−θ= ,  (26) 

one has 

22
21

0
2

0
1

1

))(,(
)2(

tt

t
tttt

g

tDef
VV

++
−−≤−

−
−

χ
γγ  

      
22

21

0
2

0
maxmin

1

))(,(
)2(

tt

t

g

tDef

++
−−≤

−χ
γγ  [using (25)].

      (27) 

The first inequality of (27) has been derived after a 
number of successive steps involving equation (3), 
inequalities (6), (7), (14) and the definitions of 1−χ t , 

0
~θ  and )(~

0 tθ . Since 0min >γ  and 2max <γ (see 
(25)), it follows from the second inequality of (27) 
that }{ tV  is nonincreasing: 

1−≤ tt VV .   (28) 

On the other hand, tV s are all nonnegative. This 

together with (28) gives that )}(~{ 0 tθ is bounded 
sequence. (Here definition (26) and the condition that 

∞<θ 20 )0(~  was used.) From definition (19), one 

can see that }{ tD  and }{ tε  are both bounded. 
Further, from equations (23) and (24) of tD  and tε , 
respectively, and definition (15) of dead zone 

),(0 ••f  it follows that these sequences are both 
nondecreasing. From the boundedness of tD s and 

tε s, it allows to conclude that there exist some 

∞<∞D  and ∞<ε∞  such that ,lim ∞∞→ = DDtt  
.lim ∞∞→ ε=ε tt  This proves part a) of the lemma. 

To show the validity of part b), it is necessary to sum 
both sides of the second inequality of (27) from 1=t  
to some N . Then one gets 

∑
= − +χ+

γ−γ−≤
N

t tt

t
t

g

tDef
VV

1
22

21

0
2

0
maxmin0

1

))(,(
)2( .  (29) 

Since tV  is nonnegative and 0)2( maxmin >γ−γ , 
inequality (29) gives that if ∞→N  then the series  

∑∞
− − +χ+
1

22
210

2
0 )1())(,(

t ttt gtDef  

will be convergent. Hence,  

0)1/())(,(lim 22
210

2
0 =++ −∞→ tttt

gtDef χ . 

Using the fact that equations (11) and (16) together 
with (8) cause tee tt ∀−= , it results in 

0)1/())(,(lim 22
210

2
0 =++ −∞→ tttt

gtDef χ , (30) 

which implies part b). This completes the proof of 
the lemma.             ■ 

With the convergence properties of the proposed 
adaptive law given in parts a), b) of the lemma, using 



 

 

similar arguments as those in (Feng, 1994; 
Kanellakopoulos, 1994; Ortega and Lozano, 1987), 
the following stability result can be shown to be 
valid. 

Theorem. Under the assumption (A1)-(A3), and 
arbitrary initial )0(~

0θ  such that 0,0 00 ≥≠ Db , and 
00 ≥ε , the closed-loop control system consisting of 

the plant of form (3) and the adaptive controller 
described in equations (11), (22)-(24) together with 
(16), (21) and (15), is (global) stable in the sense that 
the variables ty  and tu  remain bounded for all t  

provided that ∞<∗y . Moreover, 

ttt
gDe ∞∞∞→

+ε≤suplim .  (31) 

Proof. It can be shown that equation (3) together with 
(6) and (7) yield the inequality  

22111 )(maxmax CxCyu t
ttt +φ+≤ −

≤τ
τ≤τ−  (32) 

with some constants 0, 21 >CC . Applying (32) 
together with condition (5) and using the definition 
of 1−tx  and utilizing the fact that ∗y  is bounded, due 
to definition (18) of 1−χ t , obtain  

12121 )( −−− +ϕ≤χ ttt ux  

  43 max CeC
t

+≤ τ
≤τ

,     (33) 

where ∞<43 , CC  represent corresponding positive 
constants. 

With the convergence properties of }{ tD  and }{ tε  
given in item a) of Lemma and with the fact that (7b) 
implies the boundedness of tg  one gets from (21) 
that  )(0 tD  is upper bounded. This and second 
inequality of (33) gives that there exist finite 
constants 65 ,CC  such that 

600521 ))(,(max CDefC
t

t +τ≤χ τ
≤τ

− ,   (34) 

where definition (15) of ),(0 ••f was also used. 

Since ∞<∞tg , it is seen from (30) and (34) that 
the conditions of the Key Technical Lemma 
(Goodwin and Sin, 1984, Lemma 6.2.1) are satisfied. 
By this Lemma, 21−χ t  is bounded and 

0))(,( 00 →tDef t  as ∞→t .     (35) 

Since 21−χ t  is bounded, from the definition (18) of 

1−χ t , the boundedness of ty  and tu  follows.  

Taking into account (15), (21) and (35) and the fact 
that ∞ε→ε t  and ∞→ DDt , one can finally 
conclude that (31) holds. This proves the theorem. 

5. SIMULATION EXAMPLE 

To illustrate some features of the proposed adaptive 
control algorithm, the closed-loop system containing 
a plant described by  

ttt
t

t
t ubu

y

y
y ∆+++

+
θ= −

−

−
12

1

3
1

1
 

with 5.0−=θ , 0.4=b  and the adaptive controller 
with control law (11) and estimator (22)-(24) was 
simulated. The nonlinearity 3

11 )( −− =φ tt yx )1/( 2
1−+ ty  

was chosen to satisfy requirement (5). tv  was 
generated as 10-digit PRBS of amplitude 0.5. The 
upper bound on t∆  given by (7) was chosen as 
follows: tδ  was a pseudorandom variable taken from 
the range [0, 1.0] and tGgt ωsin=  with 0.1=G , 

6.0=ω . The initial estimates were: 00 ,5.1 b=θ  
5.0= , 0.00 =D , 0.00 =ε . 

Figures 1-3 show the outcome of the 100-step long 

simulation with 0.1=∗y  if 400 ≤≤ t  and 0.5=∗y  
if 10040 ≤≤ t . It is seen that the ultimate behavior 
of the closed-loop system is satisfactory.  
 

6. CONCLUSION 

This paper is an extension and generalization of 
previous works (Zhiteckij, 1997; 1999) to a class of 
nonlinear discrete-time LP control systems. A new 
adaptive scheme has been developed and analyzed. It 
does not need a priori knowledge regarding the 
bounds on both the plant parameters and the external 
disturbance and unmodeled dynamics. 

A disadvantage is that restrictive condition (C1) is 
required to guarantee the BIBO stability of resulting 
closed-loop adaptive system. However, no one 
knows yet how (C1) might be removed to ensure the 
stabilization of (3). It seems that a new tool should 
further be devised to emerge from (C1). To this end, 
another stability concept has to be advanced. 
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Fig. 1. Plant output ty (upper plot) and control input 

tu  (lower plot). 
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Fig.2. Parameter estimates tb  and tθ . 
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Fig. 3. Estimates (__)tε and )(LtD . 


