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Abstract: In this paper the problem of maximal increase of system reliability is
formulated as a resource allocation problem under a budget constraint. Dynamic
programing is used for the optimal solution. Time to system failure is dictated by
a Markov process. The system is composed of several subsystems. Each subsystem
has several possible configurations that exhibit different levels of fault tolerance and
incur different incremental costs at different times. Configuration dependence among
subsystems is allowed. An example resembling a fault tolerant industrial process is
presented, for which the proposed algorithm is used to obtain a set of maximally
reliable solutions corresponding to a set of budget constraints.
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1. INTRODUCTION

Increased usage and more sophisticated features
set ever demanding reliability requirements on
some engineering systems, such as aircraft (Bel-
castro, 2001) and printing engines (Sampath,
2001). More public awareness on product and
service quality, more intense business competition,
and higher cost of warranty programs and liability
also give industries more incentive to build more
reliable engineering systems. On the other hand,
development of most engineering systems is pro-
gressive, sometimes rather slowly. Therefore reli-
ability allocation is posed in this paper as a prob-
lem of retrofitting existing systems for improved
reliability rather than a problem of initial design
for reliability for new systems. Correspondingly,
our objective is to maximize a system reliability
measure under a budget constraint rather than to
minimize a cost measure in achieving a prescribed
reliability goal. The principle established in this
paper however, should be applicable to combina-
tions of all cases.

In designing or modifying a complex engineering
system, both reliability and life cycle cost must

be considered. System reliability is the probability
that the system can perform its intended mission
when operated under specified conditions. Life
cycle cost typically includes expenses associated
with acquisition, operation, failure, etc. In gen-
eral, the reliability of a complex system is a func-
tion of its component or subsystem reliabilities.

R(t) = f(R1(t), · · · , Rn(t)).

If a subsystem is defined as a functional unit that
would cause a system level failure if it fails, then
the above relation becomes

R(t) =

nY
i=1

Ri(t). (1)

Figure 1 shows two examples of such functional-
based system decompositions: a flight control sys-
tem and a xerographic process. It is now apparent
as to how the reliability of a subsystem would
affect the reliability of the overall system. A sound
design should contain no redundant subsystems
defined in this sense. On the other hand, each
subsystem may contain many components which
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are configured in various ways for fulfilling their
functionalities and for providing enhanced fault
tolerance. (See, for example, Thybo and Blanke,
1998.)

Reliability allocation has been posed traditionally
as a least cost problem as follows (Ebeling, 1997).
Suppose for each subsystem the cost-reliability
relation Ci(Ri) is known. The goal is to determine
the most desirable subsystem reliability Ri that
minimizes X

i

Ci(Ri),

subject toY
i

Ri ≥ R∗, Ri,min < Ri < 1, i = 1, · · · , n,

where R∗ is the system reliability goal specified
at some time t. The first difficulty encountered is
the assumed cost-reliability relations for the sub-
systems, which are generally not known. However,
if the cost-reliability relations can be described in
a convex form such as

Ci(Ri) = ci(Ri −Ri,min)2, i = 1, · · · , n,

the generalized Lagrangian optimization method
(Everett, 1963) can be used to find the solutions
when they exist. On the other hand, even if the
solutions exist, there may not be practical ways
to interconnect available components into config-
urations that implement the optimal solutions, let
alone the case of dependent configurations among
subsystems. Such configuration dependence may
be the result of an interface requirement, a phys-
ical space or location constraint, etc. There are
some common sense approaches to reliability al-
location, such as ARINC method and AGREE
method (Ebeling, 1997) that do not seek for op-
timality. These simpler approaches, however, do
not address the above issues either.

Some of the common shortfalls of the Lagrange
method have been observed by researchers in the
field of lossy data compression (Ortega and Ram-
chandran, 1998), where designers of data quantiz-
ers must trade-off between coding rate and source
fidelity (rate-distortion), instead of dealing with
the cost-reliability trade-offs. An operational ap-
proach to rate-distortion solution abandons the
search for the best quantization solution for any
system. It instead focuses on specific systems us-
ing specific coding schemes for which the op-
erational rate-distortion relation can be exactly
established and implemented. Perhaps the most
efficient operational approach to solving rate-
distortion problem is dynamic programing (Bell-
man, 1957). The term “operational” is adopted
here in this paper for the reasons that only avail-
able configuration options for each subsystem are

considered, and that dynamic programing is used
for determining the optimal reliability allocation.

The paper is organized as follows. Sections 2.1 and
2.2 discuss reliability evaluation and cost assess-
ment for a subsystem. Section 2.3 formally states
the budget-constrained reliability allocation prob-
lem based the operational cost-reliability relation
established, and discusses its solutions. Section 2.4
presents an algorithm based on dynamic program-
ing. Section 3 gives a simple example that applies
the algorithm. The example system resembles an
industrial process in the way its reliability and
cost calculations are carried out.

2. BUDGET-CONSTRAINED RELIABILITY
ALLOCATION

Consider a system of n subsystems. Each sub-
system is designed to carry out a specific func-
tion necessary for the normal operation of the
overall system, and is therefore associated with
a system level failure mode. Options in configu-
ration within a subsystem may include variation
in component types and ages, in interconnections,
in levels of redundancy, and in schemes of redun-
dancy management. These options are aimed at
enhancing the fault tolerance of the subsystem.
Each configuration has a cost associated with it.
A set of operating base line configurations for
subsystems is assumed to be already in place.
The operational approach to reliability allocation
also assumes that the configuration options are
known to the designer, and the data needed to
estimate their respective reliability and budget are
available. Our goal is to select one configuration
for each subsystem such that the overall system
reliability is maximized under a fixed budget limit
at a prespecified time. Note that the number and
individual functions of subsystems are fixed in our
retrofitting problem while these may alter in a new
design.

2.1 Reliability calculation

Reliability modeling is a process of identifying
the structure function of a given subsystem com-
prised of, say, L components with positive random
lifetimes. A component or the subsystem is in
state “0” (intact) before its lifetime and state “1”
(failed) after its lifetime. The structure function
defines a mapping: {0, 1}L → {0, 1} (Aven and
Jensen, 1999). Reliability assessment can be re-
garded as a process of evaluating the mapping,
given state transition probabilities. The funda-
mental assumption of a Markov process is that
the probability that the subsystem will undergo a
transition from one state to another state depends
only on the current state of the system and not



any previous states the subsystem may have expe-
rienced. Therefore, in general the subsystem has
2L states, and 22L transition probabilities. The
time the subsystem stays at a particular state is
called a holding time. Holding time is a random
variable. Depending on the configuration, some
of the states are exit states. The sum of holding
time probabilities of all exit states is the failure
probability of the subsystem. Since computing
such a failure probability is a mature technique
and many software tools are available (Wu, 2001,
and references therein), the detail of the holding
time probability computation is omitted.

Let the holding time probabilities of the exit states
for the jth configuration of the ith subsystem be

p
(i,j)
1 (t), · · · p(i,j)K (t). In the following development,
it is assumed that holding time probabilities for
all subsystems of all possible configurations have
been computed. Then the reliability for the given
subsystem is

Ri,j(t) = 1−
KX
k=1

p
(i,j)
k (t). (2)

Define an alternative quantity λi,j called an equiv-
alent hazard rate for the subsystem

λi,j(t) ≡ −1
t
ln(Ri,j(t)). (3)

λi,j(t) becomes independent of time only if the
subsystem has a single component configuration
that has an exponential holding time distribution.
Combining (1) and (3) yields the equivalent sys-
tem hazard rate

λj1, j2, ···, jn(t) =
nX
i=1

λi,ji(t), (4)

where ji ∈ {1, 2, · · · , mi}. A particular set of
(j1, j2, · · · , jn) signifies a choice of a system
configuration, and hence a reliability allocation
among possibly m1 ×m2 × · · · ×mn choices. (4)
is now used as a performance index for reliability
allocation, i.e.,

Jt(j1, j2, · · · , jn) ≡ λj1, j2, ···, jn(t). (5)

Once the reliabilities are allocated, the composite
reliability of the system is given by (1), or with
the up-to-date notations, by

Rj1, j2, ···, jn(t) =
nY
i=1

Ri,ji(t). (6)

2.2 Cost calculation

Suppose there are L components in the ith sub-
system with the jth configuration. To simplify our

discussion, only two cost items are considered.
They are the initial component acquisition cost
A(i,j) including of all components in the sub-

system, and the failure cost F
(i,j)
k which is only

associated with the exit state k, and is obtained
by summing up the corresponding costs of all
the components which fail when exit state k is
reached. Other items within the category of fail-
ure cost, such as labor, part replacement, loss
of profit, etc., are not distinguished. Denote by
C(i,j)(t) and by Ct(j1, j2, · · · , jn) the life cycle
cost of the subsystem and that of the system,
respectively. Then,

C(i,j)(t) = A(i,j) +

KX
k=1

F
(i,j)
k p

(i,j)
k (t) (7)

Ct(j1, j2, · · · , jn) =
nX
i=1

C(i,ji)(t), (8)

The notion of base line configuration is now de-
fined. Among all possible configurations with a
general identifier (j1, j2, · · · , jn), the identifier
(1, 1, · · · , 1) is designated to the original or
the base line configuration for the system. The
incremental cost with respect to the baseline con-
figuration for a subsystem is

∆C(i,j)(t) = C(i,j)(t)− C(i,1), (9)

and for the overall system is

∆Ct(j1, j2, · · · , jn) =
nX
i=1

(C(i,ji) − C(i,1))(t),(10)

The budget constraint can be expressed as

∆Ct(j1, j2, · · · , jn) ≤ ∆C̄, (11)

where ∆C̄ is the imposed budget limit for the
effort of fault tolerance enhancement. One impor-
tant feature of our problem formulation is that
the budget limit is fixed only in a relative sense.
In terms of life-cycle cost, the budget constraint is
time-varying, following the trend of the base line
configuration.

2.3 Problem statement and solutions

Our interest is to improve the overall system reli-
ability by using an alternative configuration that
does not exceed the budget limit ∆C̄. Since the
system reliability Rj1, j2, ···, jn(t) is in general a
nonincreasing function of time, and the system
life-cycle cost Ct(j1, j2, · · · , jn) is in general a
nondecreasing function of time, it is meaningful
that an allocation is made for a specified time,
such as the desired design life Td of the base line
system. A design life is defined to be the time



to failure that corresponds to a specific reliabil-
ity, in this case, the base line system reliability
R = R1,1,···,1(Td). Our objective is to determine
an optimal configuration identified by index set
(j∗1 , j

∗
2 , · · · , j∗n) satisfying

(j∗1 , j
∗
2 , · · · , j∗n) = arg J∗Td . (12)

The above implies that the optimal configuration
minimizes (5) subject to (11) at TD, i.e.,

∆CTD(j1, j2, · · · , jn) ≤ ∆C̄,

therefore leads to the minimum equivalent hazard
rate (maximum reliability) for the overall system:

J∗Td = min
(j1, j2, ···, jn)

JTD(j1, j2, · · · , jn)

= min
(j1, j2, ···, jn)

nX
i=1

λi,ji(TD).

If a solution exists, the optimal incremental cost
is given by

∆CTD(j
∗
1 , j

∗
2 , · · · , j∗n).

Note that a solution exists as long as ∆C̄ > 0, or,
equivalently, the total budget limit

C̄TD = ∆C̄ +
nX
i=1

C(i,1)(TD) (13)

is greater than the original budget allocated to the
base line configuration at TD. With the optimal
configuration in place,

nX
i=1

λi,j∗
i
(TD) ≤

nX
i=1

λi,1(TD)

is guaranteed, which implies, according to (3)

Rj∗1 , j∗2 , ···, j∗n(TD) =
nY
i=1

Ri,j∗i (TD) ≥
nY
i=1

Ri,1(TD).

Therefore, the system will either have a higher
reliability at the original design life, or achieves
the same base line reliability R̄ with an extended
design life.

2.4 Solution by dynamic programing

The operational solution to the budget-constrained
reliability allocation problem can be obtained in
principle by enlisting all possible configurations,
calculating the system reliabilities and the cor-
responding incremental costs for all, ordering the
results in descending reliabilities, searching for the
highest reliability on the list that has an accept-
able budget. The corresponding configuration is
the sought optimal reliability allocation.

A more systematic and efficient search method
for the optimal solution is needed if the system
has many functional units, and many configura-
tion options. In this regard, dynamic programing
(Bellman, 1957) becomes a natural candidate. The
application of dynamic programing to reliability
allocation can be explained using a trellis dia-
gram shown in Figure 2. A trellis diagram has
been used to decode convolutional codes (Forney,
1973), and to optimally trade-off rate-distortion
relation in data compression (Ortega and Ram-
chandran, 1998).

A tree structure is first created to represent all
possible solutions. Index (i, j) by each node iden-
tifies the corresponding subsystem and configura-
tion the node is associated with. Each node of
the tree at a given subsystem index represents
a possible cumulative incremental expenditure.
Each branch has an equivalent hazard rate cor-
responding to the particular configuration, and
therefore as one traverses the tree from the root
to the leaves, the accumulated hazard rate can be
computed for each of the solutions. The Bellman’s
principle of optimality is applied at every subsys-
tem index i by comparing all the accumulated haz-
ard rates leading to the same node identifier which
indicates the same subsystem configuration. Only
the solution of the lowest cumulative hazard rate
is retained, and the rest are removed or pruned
from the tree. The principle of optimality states
that the sequences of branches that result in losers
so far will be the loser paths overall. This is where
the computational saving is gained.

There are two issues that may complicate the
solution procedure. One is caused by the budget
constraint, and the other is caused by the de-
pendence of configurations among subsystems. If
the configuration of the lowest cumulative hazard
rate corresponds to a node that surpasses the
cumulative budget limit, the branch leading to the
node must be pruned, and the next best solution
in terms of the cumulative hazard rate must be re-
tained instead. The exercise of traversing through
the leaves will continue. The dependence of con-
figurations among subsystems, on the other hand,
can be dealt with by making a list of paths or a
sequences of nodes that should be excluded from
the search and prune the currently selected branch
if it in some way matches an item on the list.
Alternatively, since the trellis diagram includes
all possible solutions, configuration dependence is
built into the tree during its creation.

Define the minimal accumulated equivalent haz-
ard rate for configuration ji of the ith subsys-
tem, and the corresponding cumulative incremen-
tal cost, repectively, as follows

J∗i (ji) = min
(j1, j2, ···, ji−1)

J(j1, j2, · · · , ji). (14)



Variable t has been suppressed here. The optimal
allocation algorithm is now stated.

Storage:
(i, ji);
j∗i ;
J∗i (ji), ji = 1, · · · ,mi;
∆C∗i ;
Initialization:
j∗0 = 1;
J0(j

∗
0 ) = 0;

∆C∗0 = 0;
Recursion:
i = 1 : n;
ji = 1 : mi;

∆Ci(ji) = ∆C
∗
i−1 +∆C

(i,ji);
∆Ci(ji) > ∆C̄, ⇒ λi,ji =∞;
J∗i (ji) = J

∗
i−1(j

∗
i−1) + λi,ji ;

ji = ji + 1;
j∗i = arg{minji J∗i (ji)};
∆C∗i = ∆Ci(j

∗
i );

i = i+ 1;
Output:
(j∗1 , j

∗
2 , . . . , j

∗
n);

J∗n(j
∗
n);

∆C∗n;

3. AN EXAMPLE

The base line system considered in this exam-
ple has three single-component subsystems, each
has a reliability model of exponential distribution
with hazard rate λi,1(t) = λ = 0.2 per mil-
lion hours. Alternative configuration considered
is a cold spare of the same type of component
in additin to the base line component for each
subsystem. Coverage (Wu, 2001) for managing
the redundant component in case of a component
failure is 100%. Moreover, the failure rate for a
component during standby is 0. The Markov mod-
els for a base line subsystem and its fault tolerant
alternative are shown in Figure 3. Note that in
each configuration there contains only one exit
state. The failure probabilities and the equivalent
hazard rates (λi,j(t)) for the two configurations of
the i subsystem are shown in Figure 4.

The original acquisition costs for the base line
and the fault tolerant configurations are Ai,1 =
$200 and Ai,2 = $400, respectively. The failure
costs associated with the exit state for the two
configurations are F i,11 = $240 and F i,21 = $480,
respectively. Substituting the hazard rate curve
into (7) and (9) yield the subsystem cost curves,
as shown in Figure 5.

The algorithm in the previous Section is applied
and the optimal solution is sought for t between 0
to 10 million hours. Figure 6 and Figure 7 show,
respectively, the incremental expenditure and the

equivalent hazard rate of the system. For example,
at t = 5.025 million hours, which is the mean time
to failure (MTTF) of the base line configuration,
it is found that the optimal system configura-
tion identifiers are (j∗1 , j

∗
2 , j

∗
3 ) = (1, 1, 1), (1, 2, 2),

(1, 1, 2), and (2, 2, 2), under a $10, $500, $1000,
and $1500 incremental budget limit, respectively.
These allocations remain the same between the
MTTF (approximately 5 million hours) of the
base line configuration and the MTTF of the
fullest redundant configuration (approximately 10
million hours).
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Figure 4. Subsystem failure probability and equiv-
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