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Abstract: This paper is devoted to the state and parameter observation for anaerobic digestion
process of organic waste. The observation has a two-step structure using separation of acidogenic
stage from the methanogenic phase. Two observers and one estimator are built on the basis of a
mass-balance nonlinear model of the process, involving a new control input, which reflects the
addition of a stimulating substance (acetate). Laboratory experiments have been done with step
changes of this new input. The stability of the observers is proven and performances are
investigated on experimental data and simulations. Copyright© 2002 IFAC
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1. INTRODUCTION

In the biological anaerobic wastewater treatment
processes (methane fermentation) the organic matter is
mineralised by microorganisms into biogas (methane
and carbon dioxide) in absence of oxygen. The biogas
is an additional energy source and the methane is a
greenhouse gas. In general these processes are carried
out in continuous stirred tank bioreactors (CSTR).
Anaerobic digestion has been widely used in life
process and has been confirmed as a promising method
for solving some energy and ecological problems in
agriculture and agro-industry. Mathematical modelling
represents a very attractive tool for studying this
process (Angelidaki, et al., 1999; Bastin and Dochain,
1991), however a lot of models are not appropriate for
control purposes due to their complexity. The choice of
relatively simple models of this process, their calibration
(parameters and initial conditions estimation) and
design of software sensors for the unmeasurable
variables on the basis of an appropriate model are a
very important steps for realization of sophisticated
control algorithms (Bastin and Dochain, 1991;  Cazzador
and Lubenova, 1995; Lubenova, 1999; van Impe, et al.,
1998).

The aim of this paper is twofold:
-to calibrate the 4th order non-linear model of the
methane fermentation with addition of a stimulating
substance which may be viewed as control input
(influent acetate concentration or acetate flow rate);
-using two measurable process variables to design
estimators of the growth rates and observers of the
concentrations of the two main groups of
microorganisms (acidogenic and methanogenic),
appropriate for future control purposes.

2. PROCESS MODELLING

2.1. Experimental Studies

Laboratory experiments hase been carried out in a 3-liter
glass vessel CSTR bioreactor with highly concentrated
organic pollutants (animal wastes) at mesophillic
temperature and addition of acetate in low
concentrations (mixed with the effluent organics and pH
regulation of the added substrate) (Simeonov and
Galabova, 1998). The tank is mechanically stirred by
electrical drive and maintained at a constant
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temperature 34±0.5oC by computer controller. The
monitoring of the methane reactor is carried out by data
acquisition  computer system of on-line sensors, which
provide the following measurements: pH, temperature
(to), redox, speed of agitation (n) and biogas flow rate
(Q).  The responses of Q are obtained for step changes
of the acetate addition. The reported data offer the
suggestion that acetate positively affects the methane
production (when pH is in the admissible range) and
increased levels of acetate as electron donor result in
faster rates of methanogenesis.

2.2. Model of the Process

On the basis of the above-presented experimental
investigations and following the so-called two-stage
biochemical scheme of the methane fermentation
(Bastin and Dochain, 1991),  the following 4th order non-
linear model with two control inputs is proposed
(Simeonov and Galabova, 1998):
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For the non-linear functions µ1 and µ2 the following
structures are adopted:
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where X [g/l], S[g/l], µ[day-1] are the bacteria
concentration, the associated substrate concentration
and the specific growth rate, respectively and Q[l/day]
is the biogas flow rate. Indices 1 and 2 stand for the
acidogenic and the methanogenic phases respectively.
k1, k2, k3, k4[l/g], µmax1[day-1], µmax2[day-1], ks1[g/l],
ks2[g/l], ki2 [g/l]  are coefficients, D1 [day-1] is the dilution
rate for the inlet soluble organics with concentration

'
0S [g/l], D2 [day-1] is the dilution rate for the inlet

acetate with concentration "
0S [g/l] and D=D1+D2  is

the total dilution rate.

'
0S  is generally an unmeasurable perturbation (on line),

while Q and S2 are measurable outputs, D1 and D2  are
control inputs and "

0S  is a known constant or control

input. In all cases the washout of microorganisms is
undesirable, that is why changes of the control input D
and the perturbation '

0S  are possible only in some

admissible ranges (for fixed value of "
0S ):

 0 ≤D ≤ Dsup;  '
0S  

inf  ≤ '
0S  ≤ '

0S sup (7)

2.3. Parameter Identification

A sensitivity analysis with respect to nine coefficients
was made only on the basis of simulation studies and
they were divided into the following two groups: k1÷ k4

in the first group, µmax1, µmax2, ki2, ks1 and ks2  in the
second group. Applying the methodology from
(Simeonov, 2000) estimation starts with the first (more
sensitive) group of coefficients with known initial
values of all coefficients using optimisation method;
estimation of the second group of coefficients with the
above determined values of the first group is the
following step, etc. Experimental data were given by
measurements of  S2 and Q, with given conditions

'
0S , "

0S , D1 and D2. Results are summarised in Table 1.

Table 1. Values obtained for the coefficients of the 4th
order model with acetate addition

µmax1 µmax2 ks1 ks2 k1 k2 k3 k4 ki2

0.2 0.25 0.3 0.87 6.7 4.2 5 4.35 1.5

Some experimental and simulation results are compared
on Fig.1 in the following conditions: D1 = 0.0375=const.,
D2 = 0.0125=const., '

0S =7.5 and "
0S =25 from t = 0 to 6;

"
0S =50 from t = 7 to 16; "

0S =75 from t = 17 to 35.

Experimental data for D2=0.0125 with the first step
change of "

0S  have served for parameter estimation

with initial values of  the estimated parameters obtained
from other experiment without acetate additation (D2=0).
(Simeonov, 2000). Experimental data for D2=0.0125 with
the 2nd and 3rd step changes of "

0S  were used for model

validation. It is evident the behavior of the model with
the new control input is satisfying comparing to the
process one.

Fig.1. Evolution of X1, X2, S1, S2, Q and Qexp  in the
case of step addition of acetate

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (days)

Qexp

X1

Q
0.5 S2 5 S1

0.1 X2



3. STATE  ESTIMATION

3.1. Problem Statement

For the model (1)-(7) it is assumed that:
A1. The growth rate R1 = µ1X1 associated to acidogenic
bacteria, is unknown time-varying parameter, which is
nonnegative and bounded, with bounded time
derivative.
A2. The concentrations of X1, X2, S1, cannot be
measured on-line, while methane production rate Q and
substrate concentration S2, are measured on-line.

For the model (1)-(7) under the assumptions A1-A2, the
following problem is considered: design an estimator of
the growth rate R1 and  observers of the concentrations
X1 and X2, using on-line measurements of Q and S2. The
estimation approaches proposed by Bastin and
Dochain (1990) cannot be applied for the considered
bioprocess.

3.2 Indirect State and Parameter Estimation

The indirect estimation is a simple method for restore  of
state and parameters, using process models: diferential
equations or (and) kinetic models.

3.3. Estimator and Observer Design for the Acidogenic
Stage

Estimator of the growth rate R1 ; We assumed that:
A3. Noisy measurements Qm and S2m are available on-
line:

Qm=Q+ε1; S2m=S2+ε2,

where ε1 and ε2 are measurements noises.

The following observer-based estimator of R1  is
proposed using the dynamical equation (4) of S2

concentration:
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where R2m=Qm/k4 = R2 +ε1/k4 are measured values of R2,
ε1/k4 represents a measurement noise of R2 and C1R1,
C2R1 are estimator parameters.

The X1 estimates are obtained by:

1m1 XDRX m
ˆˆˆ

1 −=& (9)

where 
1R̂  is the estimate of R1 obtained by estimator

(8), while the µ1 estimate can be derived on the basis of
relationship:

1m1 XRm
ˆ/ˆˆ 1 =µ  (10)

Stability Analysis; Consider the error system
associated to the observer (8):
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where x is the estimation error vector, u is the input
vector of the error system and A is the matrix of the
error system. The values of C1R1, C2R1 have to be chosen
such that matrix A remains stable, i.e., C1R1 > 0 and C2R1

> 0.

Observer of X1; To improve the convergence rate and
consequently the estimation accuracy, a “software
sensor” of X1 is derived. The proposed estimation
algorithm can be considered as a modification of the
observers proposed in (Dochain, 1986) concerning
cases when the estimated variable is not observable
from measurements. The dynamics of S2 (4) is
considered and the following auxiliary parameter is
defined:

ϕ1=R1+λ1 X1, (12)

where λ1 is a bounded positive real number.
Substituting R1 from (12) in the dynamical equation of
S2  (4), the following observer of X1 is derived:
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where C1X1, C2X1 C3X1 are observer parameters.

More accurate estimates of the specific growth rate µ1

(in comparison with those derived from (10)) can be
obtained using the kinetic model:

1XR 1
ˆ/ˆˆ 1 =µ , (14)

where 
1R̂  are the estimates of R1 obtained from (8),

while 
1X̂  are the estimates of X1, obtained by observer

(13).



Stability Analysis; Consider the dynamics of the
estimation error (11). In the considered case, the values
of the matrix and vectors are:
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where ε3=R2m - R2 is estimation error of R2.

Since the matrix A, connected with the error system (15)
is time-varying through the dilution rate, the stability of
the observer (13) has to be proven using method of
Lyapunov.

Let the coefficients a1,  a2,  a3,  a4 be positive numbers,
satisfying the following assumptions:
A4. a1 a2> a5

2

A5. a1 a2 a3 - a2 a4
2   - a3 a5

2>0
A6.  a2= a4 k3λ1 – k3a5

A7.  –a2 (D+λ1)/ k3λ1 < a5 < a4 λ1 (D+λ1)/D
A8. C2X1= { a1 k3λ1 + a5 (D+λ1+ C1X1)}/ a2

A9. C3X1= (-C1X1 a4 + a5 + k3a1 )/ a3

A10. C1X1> (-C3X1 a4    + C2X1a5 ) /a1

Lemma 1:  Under assumptions A1 to A10, there exist
positive finite constants c0,  c1,  c2  such that the error
vector 
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Proof:
1. First it will be proved that the homogeneous part of
the error system (11),  (15) is exponentially stable. If
D≥0, we consider the following quadratic function:
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Define the function:
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According the assumptions A6, A7, this function is
positive and non-decreasing. Therefore, the exponential
stability of the unforced part of the system (15) follows
from theorems 9.9-9.11 (Hsu and Meyer, 1972).
2. The forcing term of the error system (11), (15) is
bounded in the following way:

42  3X1

2  2X1

3222  1X1

2  3X1

2  2X1

3222  1X1

MMC
MC

  Mk   DMMC

C
C

  k   DC

=
+−

−

−−−

+−
−

−−−

<

1ϕε
ε

εεε

&
u

w

here

<2ε 2M ; <3ε 3M ; <1ϕ& 4M

with 2M-
4M - upper bounds.

3. Then it is a standard results that the state of the
system (11), (15) is bounded (Theorem A2.6, (Bastin
and Dochain, 1991).

3.4. Estimator and Observer Design for the
Methanogenic Stage

A possible solution to the estimation problem of X2 is
connected to integration of the following equation:

2m2m2m XDRX ˆ  -ˆ =& , (19)

where R2m  are the measured values of R2, obtained
using the relationship:

R2m =Qm/k4 (20)

The estimation of the specific growth rate µ2 can be
realised from the kinetic model:

2m2m XRm
ˆ/ˆ 2 =µ (21)

Similarly to  (9), the convergence rate of  X2 estimates to
its true values in (19) is completely determined by the
experimental conditions. A new observer of X2 is
proposed to improve the convergence speed of the
estimate to its true values as well as to reduce the
influence of the measurement noises on the accuracy of
the estimation. Analogously to X1 observer, the
structure of this estimation algorithm is derived using
the following auxiliary parameter:

ϕ2=R2+λ2 X2 , (22)

where λ2 is a bounded real number.

By combining (22) and (4), it is possible to propose the
following adaptive observer of X2:

)ˆ(
ˆ

)ˆ(ˆ)(ˆ
ˆ

)ˆ(

ˆˆ
ˆ

2223

2222

2221
"
0213

222
2

SSC
dt

d

SSCXD
dt
Xd

SSCSDRk

XkkDS
dt
Sd

mX

mX

mXm

m

2

222
2

22 2

−=

−++−=

−+++

+−−=

ϕ

λϕ

λϕ

(23)

where C1X2, C2X2 C3X2 are observer parameters and 1mR  is

the estimate of R1 obtained by estimator (8).



Like µ1, more accurate estimates of the specific growth
rate µ2  (in comparison with those derived from (21)) can
be obtained using the kinetic model:

2XR 2m
ˆ/ˆ 2 =µ ,           (24)

where 
2X̂  are the estimates of X2, obtained by (23).

Stability Analysis; This analysis for the observer (23) is
similar to the one for observer (13)  under the following
assumptions:
A11. a1 a2> a5

2

A12. a1 a2 a3 - a2 a4
2   - a3 a5

2>0
A13.  a2= a4 k2λ2 – k2a5

A14.  –a2 (D+λ2)/ k2λ2 < a5 < a4 k2λ2 (D+λ2)/D
A15. C2X2= {a5 (D+λ2+ C1X2)+ k2λ2a1}/ a2

A16. C3X2= (C1X2 a4 – a5 – k2a1 )/ a3

A17. C1X2> (C3X2 a4    + C2X2a5 ) /a1

where  the coefficients a1, a2, a3 a4 are positive numbers,
while a4 and a5  -  negative numbers.

Lemma 2:  Under assumptions A1–A3, A11-A17, there
exist positive finite constants l0, l1, l2  such that the error
vector 
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Proof: it is similar to the proof of Lemma 1.

4. SIMULATION STUDIES

The performances of the proposed estimation
algorithms are investigated by simulations on a process
model, described by (1-7). The values of the design
parameters of the proposed estimator and observers are
chosen using stability conditions. On Fig. 2 to Fig. 6 are
shown in solid lines the true values of R1, X1, µ1 and X2,
µ2, respectively, and their estimated values, obtained by
R1 estimator (8), X1 and X2  observers (13), (23), (14), (24)
and relationships (9),  (10), (19), (21) (indirect
estimation) under noise free measurements of S2 and Q
and step changing D1 in the range 0.0325-0.0625.
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Fig. 2  R1 estimates under h1=h2= -5 compared with
model data.
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Fig. 3 Estimates of X1, obtained by (9) using R1

estimates and X1 estimates by observer (13)
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Fig. 4 Estimates of µ1 , obtained by (10) and  (14)
respectively
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Fig. 5. Estimates of X2, obtained by (19) and  (23)
respectively
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Fig. 6 Estimates of µ2, obtained by equation  (21)  and
(24) respectively



The estimates of R1 are obtained by estimator (8) with
eingenvalues h 1=h2=-5 of matrix A (11). The estimates of
X1, derived from (9) are plotted with dashed  line, while
the X1 estimates  by observer (13) (under C1X1=1; C2X1

calculated according the assumption A8, C3X1=0.5 and
+λ1=1.4) -  with dotted line.  The estimates of µ1,
calculated from (10) and (14) are denoted with dashed
and dotted lines respectively. The estimates of X2,
obtained by (19) are plotted with dashed line. The
estimates  X2 by observer (23) (with dotted line) are
obtained under C1X2=1; C2X2 calculated according the
assumption (A15), C3X2= -1.2 and +λ2=0.1. With dashed
and dotted lines are marked µ2 estimates by   (21) and
(24) respectively.

Simulations under 10% noisy measurements both of
and are performed. All simulation results confirm the
stability of the proposed estimation algorithms.

The simulation investigations show that more exact
estimates of X1, µ1,  X2, µ2 are obtained using the
proposed X1 and X2 observers in comparison with the
estimates obtained by indirect estimation of these
variables and parameters.

The estimates of X1 and µ1 obtained by X1 observer
converge very quicly  (about 5th day after changing D1)
to the true values. The dynamic errors connected with
the estimation of X2  and µ2  by X2 observer are
considerably smaller that those obtained by the indirect
estimation.

5. CONCLUSION

This paper has considered the problem of state and
parameter estimation in an anaerobic digestion process
for organic wastes removal and methan production. The
result are relevant to the future development and the
implementation of efficient control strategies, based on
addition of acetate.

Experimental and analytical studies have shown that
addition of acetate allowed to improve the biogas
production, which is very promising for stabilization of
the  anaerobic digestion process both during start-up
and process recovering after failure. A simplified model
describing the major dynamics and acetate addition was
proposed based on mass-balance concentrations, for
which parameters have been estimated. However those
parameters are never exactly known. Indirect estimation
of the biomass growth rates has been  investigated
allowing to recover two specific growth rates and two
biomass concentrations. Moreover due to the
importance of the above mentioned variables and
parameters, a two step approach for  their estimation
has been proposed using separation of acidogenic
stage from the methanogenic phase. In first step, an

estimator of R1 and an observer of X1 are designed on
the basis of mass-balancing equations and  on-line
measurements of X2  and Q. An observer of X2 is
synthesis in second step, using additionally the
estimates of R1 from the previous step as on-line
measurements. The stability of the proposed estimation
algorithms have been proven on the basis of analysis of
the error system. The proposed X1  and  X2 observers
have given the possibility to improve the accuracy of
the X1  and  X2  estimates ( as well as  µ1 and µ2

estimates) with respect to these ones obtained from
indirect estimation.
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