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Abstract: Run-to-run optimization exploits the repetitive nature of batch processes
to adapt the operating policy in the presence of uncertainty. For problems where
terminal constraints play a dominant role in the optimization, the system can
be operated close to the optimum simply by satisfying terminal constraints. The
input is parameterized by using the knowledge of the shape of the optimal solution
and, in the presence of uncertainty, the input parameters are adapted to meet the
terminal constraints. When the number of input parameters is greater than the
number of terminal constraints, an adaptation methodology based on a projection
matrix derived from the gain matrix between the input parameters and the
terminal constraints is proposed. The run-to-run optimization scheme is illustrated
in simulation for the minimization of the batch time of an emulsion polymerization
process with terminal constraints on conversion and number average molecular
weight.
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1. INTRODUCTION

Emulsion polymerization probably represents the
most subtle of all polymerization processes. De-
spite its relative complexity, batch emulsion poly-
merization is the method of choice whenever spec-
ifications on conversion, particle size or molecular
weight distribution are stringent. In fact, virtually
100% conversion can be achieved with this poly-
merization process (Kiparissides, 1996).

Dynamic optimization is a useful tool for reducing
production costs while guaranteeing satisfaction
of tight specifications. Optimization of batch ho-
mogeneous polymerizations has been widely stud-
ied in the literature. Typical optimization prob-
lems include minimization of batch time (Butala
et al., 1992) and minimization of molecular weight
distribution (Scali et al., 1995). However, the op-

timization of batch emulsion polymerization has
not been studied extensively since standard opti-
mization tools are model-based and the class of
processes considered is rather difficult to model.
The available studies often involve implementing a
profile that has been determined off-line on the ba-
sis of a model (Gentric et al., 1999). However, this
approach may not lead to optimality when there
is uncertainty regarding the initial conditions and
the model parameters, or in the presence of distur-
bances. Industry typically copes with uncertainty
by introducing a fair amount of conservatism in
order to guarantee constraint satisfaction.

Since batch-end measurements are readily avail-
able, a run-to-run approach based on these mea-
surements can help reduce this conservatism by
exploiting the repetitive nature of batch processes.
The measurements can be used in an iterative
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manner to find the optimal operating conditions
despite uncertainty, especially when terminal con-
straints play a dominant role in the optimal solu-
tion. Among the various run-to-run optimization
techniques, an approach that does not use a pro-
cess model at the implementation level is often
preferred. In particular, the measurement-based
optimization technique that is based on track-
ing appropriate references to guarantee optimality
is well suited for this application (Srinivasan et
al., 2002).

The case study presented in this paper concerns
the determination of the optimal reactor temper-
ature profile for the emulsion copolymerization
of styrene/α-methylstyrene in a batch reactor.
The reactor temperature is controlled by means
of a cooling fluid circulating through a jacket.
The operational constraints include bounds on the
reactor and jacket temperatures. The performance
is ensured via lower bounds on both the final
conversion and the final number average molec-
ular weight. The optimization objective is then to
minimize the batch time necessary to meet the
performance specifications by manipulating the
reactor temperature. A run-to-run optimization
strategy is implemented in the presence of uncer-
tainty (parametric uncertainty in the propagation
rate constant and in the transfer-to-monomer rate
constant).

The paper is organized as follows. Section 2 pro-
poses an approach for selecting the directions
in input parameter space that drive the system
to the terminal constraints optimally. Moving in
these directions ensures maximal cost improve-
ment with respect to meeting the terminal con-
straints. Section 3 presents a simplified dynamic
model of the polymerization reactor. The shape of
the optimal profile and the resulting input param-
eterization are discussed in Section 4. Run-to-run
optimization results are presented in Section 5,
while Section 6 concludes the paper.

2. OPTIMIZATION WITH UNCERTAINTY
AND OFF-LINE MEASUREMENTS

In this section, a specific measurement-based opti-
mization approach will be reviewed (Bonvin et al.,
2001; Srinivasan et al., 2002). It will be assumed
that only off-line (batch-end) measurements are
available. Thus, the procedure presented below is
tuned for the run-to-run adaptation using batch-
end measurements as in (Srinivasan et al., 2001).

Consider the following optimization problem:

min
u(t)

φ(x(θ, tf )) (1)

s.t. ẋ = F (x, θ, u), x(0) = xo
T (x(θ, tf )) ≤ 0

where x are the states (n-dimensional), u the
inputs (m-dimensional), F the system equations,
xo the initial conditions, θ the set of uncertain
parameters, φ the terminal cost function, and T
the terminal constraints (τ -dimensional). Without
loss of generality, assume that all the terminal
constraints are active.

The optimal inputs of (1) are concatenations of
various arcs. The inputs in each arc can be pa-
rameterized as functions of the states and/or ad-
ditional parameters. The input parameterization
π also includes the switching times between dif-
ferent arcs. Then, the inputs can be written as
u = U(π, x), where π is nπ-dimensional. Note
that nπ ≥ τ so as to be able to meet all the
terminal constraints. The necessary conditions of
optimality are given by (Srinivasan et al., 2002):

T = 0,
∂φ

∂π
+ νT

∂T

∂π
= 0 (2)

where ν (τ -dimensional) are the Lagrange mul-
tipliers for the constraints. The necessary condi-
tions consist of two parts: (i) the constraint part
(T = 0) and (ii) the sensitivity part.

The basic idea of the measurement-based opti-
mization approach is to enforce the conditions
of optimality in the presence of uncertainty by
adjusting the values of π on the basis of pro-
cess measurements. Adaptation of π to satisfy
the constraints T = 0 is straigtforward. However,
meeting the sensitivity conditions is less obvious
due to (i) the absence of direct measurement of the
sensitivities, and (ii) the presence of the unknown
Lagrange multipliers ν.

Yet, it comes handy that there is usually consid-
erably more to gain by satisfying the constraints
than by reducing the sensitivities to zero. So, the
approach taken here is to simply adapt π so as
to meet the constraints. The question that arises
is: “Which combinations of π need to be adjusted
to push the system to the terminal constraints?”
A method based on the gain matrix relating the
input parameters and the terminal constraints is
investigated for the same.

The directions in input parameter space can be di-
vided into those that do not affect the constraints
and those that do. The division is based on the
gain matrix between the input parameters π and
the constraints T , G = ∂T

∂π , which is of dimension
τ × nπ. Let rank(G) = τ̄ ≤ τ . In most cases, the
constraints are independent and τ̄ = τ .

Singular value decomposition of G gives G =
U S V T where U has dimension τ × τ , S has
dimension τ × nπ and V has dimension nπ × nπ.
The matrices U , S, and V can be partitioned as:

U = [Ū Ũ ], S =
[
S̄ 0
0 0

]
, V = [V̄ Ṽ ] (3)



where Ū and V̄ correspond to the first τ̄ columns
of the respective matrices and Ũ and Ṽ to the
remaining columns. S̄ is the τ̄ × τ̄ submatrix of S.
From the structure of S, G = Ū S̄ V̄ T follows. Ṽ is
of dimension nπ×(nπ− τ̄) and corresponds to the
directions in input parameter space that do not
affect the constraints. So, by defining π̄ = V̄ Tπ
and π̃ = Ṽ Tπ, there results ∂T

∂π̄ = Ū S̄ and
∂T
∂π̃ = 0. π̄ is of dimension τ̄ and π̃ of dimension
(nπ − τ̄).
The elements of π̄ will be adapted using batch-end
measurements. The pseudo-inverse of the τ × τ̄
matrix ∂T

∂π̄ can be used for decoupling and then
decentralized controllers can be used for tracking
T = 0. π̃ is kept constant at its conservative off-
line determined value. The adaptation law is given
by:

π̄(k) = π̄(k − 1)− S̄−1ŪTKT (k) (4)

π(k) = V̄ π̄(k) + Ṽ π̃ (5)

where K is a diagonal gain matrix of dimension
τ×τ . The two above equations can be put together
in a compact form as shown below:

π(k) = π(k − 1)− PG+KT (k) (6)

where the pseudo-inverse of G is given by, G+ =
V̄ S̄−1ŪT and P is a projection matrix, P = V̄ V̄ T .
Equation (6) corresponds to decentralized integral
control action. Note that it is possible to add
proportionnal and derivative action if necessary.
The block diagram representation of the scheme
is shown in Figure 1.
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Figure 1. Block diagram of the adaptation scheme

The reasons for using a decomposition in π̄ and π̃
based on the gain matrix G are twofold:

(1) The Lagrange variables ν can be isolated in
necessary conditions. In the space of π̄ and
π̃, the necessary conditions read:

T = 0,
∂φ

∂π̃
= 0, and

∂φ

∂π̄
+ νT

∂T

∂π̄
= 0 (7)

The parameters π̄ and π̃ are adjusted to
meet the conditions T = 0 and ∂φ

∂π̃ = 0,
respectively. The last condition is only used
to determine the Lagrange multipliers ν and,
thus, need not be considered.

(2) The direction π̄ corresponds to the direction
of maximum reduction in cost that can be
achieved when the constraints are moved
by an infinitesimally small amount. In other
words, it is equivalent to the steepest descent
direction in the presence of constraints.

3. TENDENCY MODEL FOR A
POLYMERIZATION PROCESS

A detailed model of the reaction is very difficult
to obtain due to the presence of several phases
in the reactor. Even if such a model could be
obtained, it would consist of a large number of
differential equations and parameters that would
be difficult to estimate. The most appropriate
model for optimization is a tendency model that
describes the main phenomena of the process.

3.1 Polymerization mechanism

The mechanism of emulsion polymerization has
been classically divided into three steps (Smith
and Ewart, 1948):

Step 1 Particle nucleation : Free radicals are pro-
duced in the aqueous phase by initiator decom-
position. They are captured by the micelles,
where the polymerization begins. This step ends
with the disappearance of the micelles.

Step 2 Particle growth with monomer satura-
tion: Particles grow as the monomer diffuses
from the monomer droplets towards the parti-
cles at a rate faster than monomer consumption
by the reaction. Thus, the particles are satu-
rated with monomer. This step ends with the
disappearance of monomer droplets.

Step 3 Particle growth without monomer supply:
The reaction proceeds and the monomer con-
centration in the particles decreases.

The following assuptions are made in building the
model (Gentric et al., 1999) :

• Styrene and α-methylstyrene are both hy-
drophobic monomers : nucleation is supposed
to be heterogeneous and only micellar nucle-
ation is considered.

• Propagation, transfer to monomer, termina-
tion reactions in the aqueous phase and rad-
ical desorption are neglected.

• There is at most one radical per polymer
particle, as termination in particles is very
rapid compared to radical entry.

• Emulsifier molecules are adsorbed in monomolec-
ular layers at the polymer particles surface.

• Gel effect does not take place.

3.2 Tendency model

Initiator decomposition dynamics are neglected
and the initiator concentration is supposed to be



constant: I = I0. Quasi-steady-state approxima-
tion leads to the following tendency model:

Ṁ = −Rp = −kpMp
Np
Na
n̄, M(0) = M0

Ṅp =
RiNa

1 + ( εNpSNa
)
, Np(0) = 1

Q̇0 =
Rin̄Np

Np + (Sε )
+ ktrMMp

Np
Na
, Q0(0) = 0

(8)

where M is the overall monomer concentration,
(styrene and 10 % in mass of α-methylstyrene),
Mp is the concentration of monomer in the par-
ticles, Np is the number of particles, Q0 is the
zeroth-order moment of the molecular weight dis-
tribution, Na is the Avogadro number and n̄
is the average number of radicals per particle.
Ri represents the initiator decomposition rate,
Ri = 2fikdI0, where fi is the efficiency factor of
initiator decomposition. In step 3, the expression
Mp is different from that of the previous steps:

Mp =



Mpc if X ≤ Xc

(1−X)ρm
[(1−X) +Xρm/ρp]MM

if X > Xc
(9)

where X(t) = 1 − M(t)
M(0) is the global conversion,

and Xc the critical conversion. The difference in
the expression for Mp is due to the fact that, at
the end of step 2, there are no droplets left and
so during step 3, Mp decreases with conversion.
The concentration of the emulsifier is S = S0 −
kv(XM0)

2
3N

1
3
p where S0 is the initial emulsifier

concentration,M0 the initial monomer concentra-
tion, and kv a constant.

The number average molecular weight Mn(t) can
be defined as Mn(t) = MM

M(0)−M(t)
Q0(t)

and the
kinetic coefficients kp, kd and ktrM follow Arrhe-
nius’s law: kp = kp0e

− Ep
RT , kd = kd0e

− Ed
RT , ktrM =

ktrM0e
−EtrMRT .

The energy balances for the reactor and for the
heating jacket are given by:

Ṫ = −V∆H
mrCp

Rp +
UA(Tj − T )
mrCp

, T (0) = T0

Ṫj =
Fj(Tjin − Tj)

Vj
− UA(Tj − T )

ρjVjCj
, Tj(0) = Tj0

(10)

where Tj is the jacket temperature, and Tjin the
jacket inlet temperature. The numerical values for
the parameters are given in Table 1.

4. CHARACTERIZATION OF THE OPTIMAL
SOLUTION

Since the reactor temperature influences the sys-
tem directly and efficiently, it represents a natu-
ral choice for the decision variable. If increasing

Table 1. Model parameters

fi 0.5 n̄ 0.5
ε 10−16 Na 6.02 1023

kv 10−7 g/(mol.l)
2
3 Ed 140.2 kJ/mol

kd0 4.5 106 s−1 Ep 29 kJ/mol
kp0 5.7 106 l/(mol.s) EtrM 85 kJ/mol
ktrM0 1.5 1011 l/(mol.s) mrCp 4.151 kJ/K
UA 6.4 J/(K.s) Fj/Vj 0.817 s−1

V∆H −66.9 kJ.l/mol ρjVjCj 1.946 J/K
ρm 0.91 kg/l ρp 1.1 kg/l
MM 105.41 g/mol Mpc 5.38 mol/l
Xc 0.422 M0 2.16 mol/l
I0 3.7 10−3 mol/l S0 4.432 g/l
T0 343 K Tj0 343 K

the reactor temperature accelerates the reaction,
it also modifies the structure and the properties
of the polymer, thus leading to shorter polymer
chains and lower molecular weights. The batch
time represents another decision variable.

The reactor temperature is considered as the ma-
nipulated variable, it is assumed that a control
system exists that allows perfect reactor temper-
ature control.

4.1 Problem formulation

The optimization problem consits of minimizing
the batch time subject to bounds on the reactor
temperature, bounds on the jacket inlet tempera-
ture, terminal constraints on conversion and num-
ber average molecular weight. The problem can be
mathematically expressed as follows:

min
T (t), tf

J = tf (11)

subject to dynamic equations (8)

Tmin ≤ T (t) ≤ Tmax
Tjinmin ≤ Tjin(t)
X(tf ) ≥ Xfd
Mn(tf ) ≥Mnfd

where Tmin and Tmax represent bounds on the
reactor temperature, Tjinmin a lower bound on the
jacket inlet temperature, Xfd and Mnfd minimal
desired values at final time for conversion and
number average molecular weight, respectively.
Tjin(t), which is adjusted by the reactor temper-
ature controller, can be computed from (10) and
thus Tjin(t) = f(M,Np, T, Ṫ , T̈ ).

4.2 Sequence of arcs and input parameterization

The choice of the references to be tracked is based
on a characterization of the optimal solution. If
the type and sequence of arcs that constitute the
optimal solution and the set of active terminal
constraints do not vary with the uncertainty, feed-
back controllers can be used to push the sys-
tem closer to the active constraints and regulate



certain sensitivities around zero (Srinivasan et
al., 2002).

The qualitative nature of the optimal solution
for the emulsion copolymerization of styrene/α-
methylstyrene in a batch reactor can be deter-
mined using the tendency model. The aforemen-
tioned compromise between conversion and molec-
ular weight has an immediate consequence: the
optimal solution will not necessarily be on input
bounds or path constraints, and some arc(s) will
exist to represent this intrinsic compromise. The
solution can be constructed qualitatively and con-
sists in the following four arcs :

Arc 1 : During the nucleation step, it is assumed
that polymer particles do not grow. Thus, it
is possible to accelerate the nucleation without
a negative effect on the molecular weight by
increasing the temperature. As a result, the
reactor temperature is set at its maximum value
Tmax. Arc 1 is thus the constraint-seeking arc
T (t) = Tmax.

Arc 2 : As soon as the particles start to grow,
the optimal reactor temperature is somewhere
between Tmin and Tmax due to the intrinsic
compromise. The second arc implements the
transition between Arc 1 and this constraint-
seeking arc in minimum time. The best way to
jump from Tmax to some intermediate tempera-
ture is to decrease T as fast as possible, which is
limited by the lower bound on Tjin. Arc 2 is also
a constraint-seeking arc with Tjin(t) = Tjinmin .

Arc 3 : During step 2, the rate of reaction is
nearly constant. Any increase in temperature
will favour conversion, but the average molec-
ular weight will decrease, and vice versa. The
solution is thus to keep the temperature nearly
constant at some intermediate optimal value
that can be determined using tools from dif-
ferential geometry (this is not presented here).
Arc 3 is thus a compromise-seeking arc.

Arc 4 : During step 3, the rate of reaction de-
creases as a function of Mp. The optimal solu-
tion therefore consists of increasing the temper-
ature to compensate for the decrease in reaction
rate. Thus, Arc 4 is also a compromise-seeking
arc.

In addition, the two terminal constraints regard-
ing conversion and molecular weight must be ac-
tive for the batch to be optimal.

A way to determine the various arcs is to use the
conditions of optimality from Pontryagin’s Maxi-
mum Principle together with tools from differen-
tial geometry such as Lie brackets. For each arc,
an analytical expression was found that confirmed
the qualitative analysis given above. Especially, it
was shown that Ṫ = 0 during Arc 3. It was also

noticed that Arc 4 is an unstable arc (the temper-
ature derivative is a function of T 2). However, for
the range of conversions considered here, a quasi-
linear assumption for this arc will be used.

Since an analytical expression for each arc is avail-
able, the optimal solution can be parameterized
using only the switching times between these arcs,
the free final time and the initial temperature of
the fourth arc (the latter cannot be determined
using analytical tools). Furthermore, a sensitivity
analysis shows that the last arc has little influence
(less than 0.3%) on the cost and thus can be
discarded. This way, the optimal temperature pro-
file has only three arcs and can be parameterized
using the two switching times tsw1 and tsw2 and
the final time tf , as shown in Figure 2. These three
parameters can be adjusted on a run-to-run basis
using batch-end measurements in order to satisfy
the two active terminal constraints on conversion
and number average molecular weight.

Tmax

Tmin

t t tsw1 sw2 f

Optimal temperature profile

 

Figure 2. Nominal optimal input without Arc 4

5. OPTIMIZATION RESULTS

The approach proposed in Section 2 for choosing
the update directions to meet the two terminal
constraints is investigated in simulation. Assum-
ing ± 15% variation in kp0 and ± 10% variation in
ktrM0 , a conservative worst-casestrategy that will
serve as a reference for the run-to-run schemes is
first obtained.

The presence of 5% zero-mean gaussian measure-
ment noise is considered. As a result, a backoff
(conservatism) is introduced in order not to vio-
late the terminal constraints. X∗fd and M∗nfd rep-
resent the conservative set points provided to the
controller. The numerical values of the constraints
and controller set points are given in Table 2.
With the backoffs used, the controller gains are
tuned such that no constraint violation occurs.

Three uncertainty cases are described in Table 3
and the corresponding results are presented in
Table 4. In Case (a), the uncertainty is relatively
large and the improvement through adaptation is
over 30%. In Cases (b) and (c), the uncertainty is
lower and, although the improvement is smaller,
it can still be quite significant.



Constraint Value

Tmin 313K
Tmax 343K
Tjinmin 293K
Xfd 60%
X∗fd 63%

Mnfd 2× 106 g/mol
M∗nfd 2.1× 106 g/mol

Table 2. Values of constraints and con-
troller set points

Case kp0 ktrM0

(a) +15% −10%
(b) +5% −5%
(c) −5% +5%

Table 3. Values of uncertain parameters

Though the run-to-run optimization scheme takes
about 20 runs to converge to the optimal values,
the major part of the optimization is done in the
first few batches. The run-to-run evolution of the
cost function and the constraints are shown in
Figures 3 and 4.

Case 5th batch 30th batch

(a) 1.31 (29.8) 1.14 (38.9)
(b) 1.50 (19.5) 1.34 (28.1)
(c) 1.67 (10.0) 1.59 (14.5)

Table 4. Final time in hours (improve-
ment in % from the conservative solu-

tion).
The proposed adaptation uses a fixed G. However,
if G varies significantly with the operation point,
it can be necessary to use different values of G.
This was not the case for the problem presented
here.
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Figure 3. Evolution of the cost, Case (a) (-), Case
(b) (+), Case (c) (*)

6. CONCLUSION

This work has demonstrated the effectiveness of
run-to-run optimization for the batch emulsion
copolymeriztion of styrene/α-methylstyrene. A
scheme has been proposed for choosing the update
directions in input parameter space to effectively
meet the terminal constraints. This way, batch
performance can be nearly maximized when the
cost is dominated by terminal constraints. The
approach is based on the gains between the input
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Figure 4. Evolution of the average number molec-
ular weight and conversion : Case (a)

parameters and the terminal constraints, the gains
being calculated around the conservative input
profile. Two possible extensions can be envisioned:
i) the gains are recomputed a few times during
the adaptation process in order to speed up con-
vergence, and ii) information regarding the effect
that uncertainty has on the values of the optimal
input parameters can be used to find uncertainty-
related update directions.
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