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Abstract: This paper deals with traffic rate control problems of networks. The
incentive Stackelberg strategy concept was introduced to the networking model
that comprises subsidiary systems of users and network. A linear strategy and
a nonlinear strategy were proposed to the elastic traffic problem, with the
illustrations via examples. The presented method was extended to non-elastic
traffic problem.
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1. INTRODUCTION

The work focus on the system model of charg-
ing, routing and flow control, where the system
comprises both users with utility functions and a
network with capacity constraints. Kelly (1997)
showed that the optimization of the system may
be decomposed into subsidiary optimization prob-
lems, one for each user and one for the network,
by using price per unit flow as a Lagrange multi-
plier that mediates between the subsidiary prob-
lems. Low and Varaiya (1993) and Murphy et al.
(1994) described how such results may be used
as the basis for distributed pricing algorithms,
and MacKie-Mason and Varian (1994) described
a “smart market” based on a per-packet charge
when the network is congested.
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As mentioned in Kelly’s (1997) work, price per
unit flow is the mediating variable. And this
may cause a particular difficulty for elastic traffic.
In an implementation of an ATM available bit
rate service, for example, users would be subject
to two sources of uncertainty about the service
offered. The system optimum can be achieved
when users’ choice of charges and the network’s
choice of allocated rates are in equilibrium. For
elastic traffic, the equilibrium exists and a system
optimum can be achieved. But for most non-
elastic traffic, the equilibrium does not exist and
the system optimum can not be achieved.

By using the incentive Stackelberg strategy con-
cept, a new way to deal with such kind of routing
control problems is proposed. Studies on the game
theory and its applications belong to the area of
automatic control (Basar and Olsder 1982). In
a game theoretic model (Funderberg and Tirole
1992), there are at least two players who control
their own inputs to reach their own outcomes from
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the system, respectively. Therefore, game theory
(Myerson 1991) provides a systematic framework
to treat the dynamic behavior of noncooperative
networks. Two major concepts in game theory,
Nash and Stackelberg equilibria, have been em-
ployed into the study of noncooperative networks
(see Bertsekas and Gallager 1992, Douligeris and
Mazumdar 1989, Economides and Silvester 1990,
Korilis et al 1996, Orda et al 1993). In these
references, the game theoretic models are all based
on the classical noncooperate strategy concepts.

In this paper, the traffic rate control problem is
discussed by means of the incentive Stackelberg
strategy, which was introduced into the game the-
ory by Ho et al (1982). To the elastic traffic, a
linear strategy and a nonlinear strategy are pro-
posed to reveal the concept of incentive strategies.
The method is generalized to non-elastic traffic
model. The incentive strategy consists of two parts
one of which is the regular price. The other is
punishment price which varies on the variance of
traffic rate linearly or functionally.

2. SYSTEM MODEL

Consider a network with a set J of resources, and
let Cj be the finite capacity of resource j, for
j ∈J. A set S of users use the network with rates
xs ∈S, s = 1, 2, · · · , S. For each user s, the utility
maximization is as follows.

USERs(Us; λs):

maximize Us(xs)− λsxs

over xs ≥ 0
(1)

where Us(xs) is the utility function of user s, and
it is an increasing, strictly concave and continu-
ously differentiable function of xs. λs is a price
charged to user s per unit flow, and also is the
component of the vectors of Lagrange multiplies
for the following problem of overall system.

SYSTEM(U,H,A, C):

maximize
S∑

s=1

Us(xs)

subject to Hy = x,Ay ≤ C

over x, y ≥ 0

(2)

where H and A are the 0−1 matrixes, y is the flow
pattern. And the Lagrangian form of the problem
is

L(x, y, z; λ, µ) =
S∑

s=1

Us(xs)− λT (x−Hy) + µT (C −Ay − z)
(3)

where z is a vector of slack variables. If the
network receives a revenue λs per unit flow from
user s, then the revenue optimization problem for
the network is as follows.

NETWORK(H,A, C;λ):

maximize
S∑

s=1

λsxs

subject to Hy = x,Ay ≤ C

over x, y ≥ 0

(4)

From Kelly’s (1997) work, about these three prob-
lems, there exists a price vector λ = (λ1, λ2, · · · , λs)
such that the vector x = (x1, x2, · · · , xS), formed
from the unique solution xs to USERs(Us; λs) for
each s ∈S, solves NETWORK(H,A, C; λ). The
vector x then also solves SYSTEM(U,H,A, C).

Note that USERs(Us;λs) and SYSTEM(U,H, A, C)
have the same parts Us(xs) in their formulations.
So it is easy to find the result in cooperation. But
the problem NETWORK(H,A, C; λ) is just oppo-
site to the problem USERs(Us;λs), because there
are the same parts λsxs in their formulations with
the opposite symbols. So, they are non-cooperate
in general. The conditions allowing the vectors λ
and x solve both problems are very strictly.

If the leader wants users be at the rates which is
arranged by the network, the leader must have the
leadership in the game which is indicated in the
following Stackelberg strategy.

ξs(xs) = λs + ps(xs)− ps(xa
s) (5)

where ps(xs) is any function of xs to be deter-
mined. xa

s is a desired point arranged by the
network. ps(xs) can be taken as a linear function

ps(xs) = qsxs (6)

where qs is some kind of punishment price. It will
be determined by the leader.

3. INCENTIVE STRATEGY FOR ELASTIC
TRAFFIC PROBLEM

3.1 Linear Incentive Strategy

In this section, the linear function (6) is taken as
the Stackelberg incentive strategy to force users
to act at the point xa

s . Replacing λs in (1) by ξs

with linear structure, the problem USERs(Us;λs)
becomes

USERs(Us; qs)

maximize Us(xs)− λsxs − qs(xs − xa
s)xs

over xs ≥ 0
(7)



To get qs, calculate the derivative of (7) with
respect to xs, and let it be zero. Therefore,

U ′
s(xs)− λs − 2qsxs + qsx

a
s = 0 (8)

Let xs takes the value at xa
s . Then

qs =
U ′

s(x
a
s)− λs

xa
s

(9)

So, the strategy should be

ξs(xs) = λs +
U ′

s(xa
s)− λs

xa
s

(xs − xa
s) (10)

The following work is to prove that (10) is a
incentive Stackelberg strategy, i.e.

ξs(xa
s) = λs (11)

and

arg max[Us(xs)− λsxs − qs(xs − xa
s)xs]
= xa

s
(12)

It is easy to see that (11) is held from the structure
of ξs(xs) in (10). Eq. (12) means that the following
inequality should hold.

Us(xa
s)− λsx

a
s ≥

Us(xs)− λsxs − qs(xs − xa
s)xs

(13)

Now, denote by xu
s the optimal rate of user s which

maximizes the problem USERs(Us;λs). So

U ′
s(x

u
s )− λs = 0

U ′
s(xs)− λs > 0 if xs < xu

s

U ′
s(xs)− λs < 0 if xs > xu

s

(14)

If the optimal rates of users coincide with the
arranged rates of the network, i.e. xu

s = xa
s , the

prefer rate of user s is just xa
s . Therefore,

Us(xa
s)− λsx

a
s = Us(xu

s )− λsx
u
s

> Us(xs)− λsxs
(15)

So (13) is satisfied in the case xu
s = xa

s .

If xu
s 6= xa

s , two cases need to discuss.

i) xu
s > xa

s . Denote by Vs(xs) the entire utility
function of user s in problem USERs(xs; qs). Sub-
stituting (9) into Vs(xs), and calculating the first
and second derivatives of (7) with respect to xs,
so

Vs(xs) = Us(xs)− λsxs

− U ′
s(x

a
s)− λs

xa
s

(xs − xa
s)xs

(16)

V ′
s (xs) = U ′

s(xs) + U ′
s(x

a
s)− 2λs

− 2(U ′
s(x

a
s)− λs)
xa

s

xs
(17)

V
′′
s (xs) = U

′′
s (xs)− 2(U ′

s(x
a
s)− λs)
xa

s

(18)

From (17), one can see V ′
s (xa

s) = 0. Since Us(xs)
is a concave function, so U

′′
s (xs) < 0 for all xs.

Also from (14), U ′
s(x

a
s) − λs > 0. Then one can

see that V
′′
s (xs) < 0. From V ′

s (xa
s) = 0, and

V
′′
s (xs) < 0, one can make the conclusion that

Vs(xa
s) > Vs(xs). i.e. Eq. (13) holds.

In this case, if user s deflected from xa
s , he would

like to tend to xu
s rather than the other direction.

i.e. xs > xa
s .

ii) xu
s < xa

s . Actually, it could not occur in this
case. Since Us(xs) is an increasing function, its
optimum must be at the right border of its region,
if it has a finite region.

3.2 Numerical Example and Geometric Illustration

The example from Kelly’s (1997) work is used.
Suppose that each source-sink s is served by a
single route r, and abbreviate notation by writing
s = r = 1, rather than s = {r}; thus H = I,
the identity matrix. Suppose also that Us(xs) =
ms log xs. Let the finite capacity is C = 10. Then
λs = ms/10.
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Fig. 1. Curves of the functions U(xs) = ms log xs for
problem (2)
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Fig. 2. Curves of the functions F (xs) = ms log xs−λsxs

for problem (1)

Figure 1, 2, and 3 give out the curves of the
functions with different ms (ms = 1, 5, 10, 15) for
problems SYSTEM(U,H,A, C), USERs(Us;λs)
and NETWORK(H, A,C; λs), respectively. From
those curves, one can see that the optimal points
for those three problems are the right end of the
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Fig. 3. Curves of the functions G(xs) = λsxs for problem
(4)

interval (0, C], no matter how the value of ms is,
i.e. xu

s = C = 10. If the leader won’t want the
users act at xu

s but another point such as xa
s 6= xu

s

for some reason, the incentive strategy should be
taken.
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Fig. 4. Curves of the functions V (xs) = ms log xs −
λsxs − qs(xs − xa

s )xs for problem (7)

Figure 4 gives out the result of USERs(Us; qs)
with ms = 5 and λs = 0.5 for two different points
of xa

s , respectively. One is xa
s = 8, the other is xa

s =
6. In each case, the maximum is really at xa

s . For
xa

s = 6, a contour illustration is given in Figure 5
from which one can see the optimal point clearly.
In Figure 5, the set of curves is the contour of the
function for user s in problem USERs(Us;λs) and
the line with tangent qs = 1/18 is the incentive
strategy. One can see that the maximal value of
the function of the user along this line is got at
xs = xa

s = 6 where is the tangent point of the line
and the contour curves.
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Fig. 5. Contour illustration of the optimal problem

3.3 Non-linear Incentive Strategy

Choose the function as

ps(xs) =





λs(xa
s − xs)
xs

if xs < xa
s

0 if xs = xa
s

Us(xs)− Us(xa
s)

xs
if xs > xa

s

(19)

It is easy to see that (5) becomes ξs(xs) =
λs, if xs = xa

s . It is just the first condition
on an incentive strategy in Stackelberg game
theory (Basar and Olsder 1982). To meet the
second condition, substitute (5) into (1) with
the structure (19). The problem USERs(Us;λs)
becomes

USERs(Us; ps(·)) :

maximize Ws(xs)

over xs ≥ 0
(20)

where Ws(xs) = Us(xs)− λsxs − ps(xs)xs.

Consider it in both cases of xs < xa
s and xs > xa

s ,
respectively.

i) xs < xa
s . In this case, ps(xs) = λs(xa

s − xs)/xs.
Then

Ws(xs) = Us(xs)− λsx
a
s (21)

So, one can see Ws(xs) < Ws(xa
s) for Us(xs) <

Us(xa
s).

ii) xs > xa
s . In this case, ps(xs) = (Us(xs) −

Us(xa
s))/xs. Then

Ws(xs) = Us(xa
s)− λsxs (22)

So, one can see Ws(xs) < Ws(xa
s) for λsxs > λsx

a
s .

In both cases, it is shown that Ws(xa
s) > Ws(xs)

which indicates the satisfaction of the second
condition for incentive strategy.

The same example is used again here to illustrate
how the non-linear incentive strategy works on
forcing users to act at xa

s . Let again Us(xs) =
ms log xs. According to (19), ξs(xs) = λs+λs(xa

s−
xs)/xs when xs < xa

s , ξs(xs) = λs + ms(log xs −
log xa

s)/xs when xs > xa
s , and ξs(xs) = λs when

xs = xa
s . Figure 6 gives out the result in the

contour curves, where ms = 5, λs = 0.5 and xa
s =

6. The folding curve is the non-linear incentive
strategy ξs(xs). one can see that, along the curve,
the maximal point of ms log xs−λsxs is at xs = 6
and λs = 0.5.

Compare with Figure 5, one can see that non-
linear incentive strategy is stronger than the linear
one. It means that if the user deflected from xa

s ,
he would be punished much more under the non-
linear incentive strategy than under the linear
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Fig. 6. Contour illustration of the optimal problem with
non-linear incentive strategy

incentive strategy. But the linear strategy is easier
to be realized than the nonlinear one.

4. INCENTIVE STRATEGY FOR
NON-ELASTIC TRAFFIC PROBLEMS

In previous sections, the users’ utilities Us(xs)
have an increasing character. By the assumption,
one can easily determine the optimum of problem
USERs(Us; λs) and/or SYSTEM(U,H, A, C).

However, in a practical network, the delay can
be faced very often. The more the traffic rate
is closed to the capacity of resources, the higher
the delay will be. Therefore, the utility function
can not be always increasing. In this section, the
utility function Us(xs) is concave but no longer be
increasing. In such conditions, the parameter λs in
problem USERs(Us;λs) can not be the Lagrange
multiplies of problem SYSTEM(U,H, A, C), be-
cause it is possible that the optimum of problem
SYSTEM(U,H,A, C) can be got in the inner of
the set X.

X = {(x, y) | Hy = x,Ay ≤ C, x, y ≥ 0} (23)

As known, the lagrange multipies of such problem
should be zero and can not be taken as the price
for per unit flow.

So λs > 0 must be considered now as a
regular price determined by the network. As-
sume that x∗s is the optimal rate for problem
SYSTEM(U,H,A, C), i.e. U

′
s(x

∗
s) = 0. And as-

sume also that xu
s is the optimal rate for problem

USERs(Us; λs), i.e. U
′
s(xu

s )− λs = 0. It is obvious
that x∗s 6= xu

s if λs 6= 0. The problem here is to find
an incentive strategy to force users to act at the
point x∗s rather than xu

s . Use the linear function
here again, under which problem USERs(Us;λs)
becomes

USERs(Us; ps):

maximize Us(xs)− λsxs − qs(xs − x∗s)xs

over xx ≥ 0
(24)

By the following steps, one can determine what qs

should be.

i) Calculate the derivative of (24) with respect to
xs, and let it be zero, i.e.

U
′
s(xs)− λs − 2qsxs + qsx

∗
s = 0 (25)

ii) Let xs take the value at x∗s. So

qs = −λs

x∗s
(26)

It can be easily shown that it is an incentive
Stackelberg strategy under the condition

λs < −U
′′
s (x∗s)x

∗
s

2
. (27)

Eq. (27) means that the regular price should be
determined in a reasonable range.

To illustrate the result, let Us(xs) = ms1 log xs +
ms2 log(C − xs). one can see that Us(xs) is no-
longer increasing always in (0, C]. The example is
just the extension of that in (?).

Figure 7 and Figure 8 give out the non-increasing
concave utility functions Us(xs) and the functions
Us(xs)−λsxs of users with different ms1 and ms2.
The three curves in each of Figure 7 and Figure
8 are related to three cases (a) ms1 > ms2, (b)
ms1 = ms2, (c) ms1 < ms2, as (ms1,ms2) takes
values at (7, 3), (5, 5), (3, 7), respectively. From
Figure 7, one can see that arg max Us(xs) is in
the open set (0, C), i.e. x∗s, in the three cases, are
7, 5, 3, respectively, while U

′′
s (x∗s), x∗s = 7, 5, 3, are

−10/21,−2/5,−10/21, respectively. And λs can
be chosen to be less than 5/7, 1, 5/3 in these three
cases.

From Figure 8, however, one can see that xu
s =

arg max[Us(xs) − λsxs] are 5.78046, 3.81966 and
2.15477. It indicates that users prefer xu

s (for
instance, 5.78046 in the case ms1 = 7) rather than
x∗s (= 7). It can also be seen in Figure 9 where
the line ξs(xs) = 0.5 is just tangent to contour
of the function Us(xs) − λsxs at xs = 5.78046.
Note that ξs(xs) = 0.5 means that the regular
price is λs = 0.5 and the punishment price is
null. Along line ξs(xs) = 0.5, the maximum point
is just xs = 5.78046. It means that users would
rather take xu

s = 5.78046 rather than x∗s = 7, if
there were no punishment price in the strategy.

Figure 10 gives out the geometric illustration of
the incentive strategy. The line of the incentive
function is just tangent to the contour of the
utility function Us(xs) − λsxs at xs = 7. Along
the line, the maximum point is just xs = 7. So,
under the incentive strategy (indicated by the
line), users have to choose the rate x∗s = 7. If they
still choose the rate xu

s = 5.78046 they prefer,
their outcomes will be less than at x∗s = 7.



2 4 6 8 10
x
 s

-10

-5

5

10

15

20

U(x )
   s

a b c

Fig. 7. Non-increasing concave utility functions U(xs) =
ms1 log xs + ms2 log(C − xs) and their optimum
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Fig. 8. Users’ non-increasing concave functions F (xs) =
ms1 log xs + ms2 log(C − xs)− λsxs and their opti-
mum
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Fig. 9. Contours for problem (1)

2 4 6 8 10
rate x
      s

0.25

0.5

0.75

1

1.25

1.5

1.75

2

p
r
i
c
e
 
l
a
m
b
d
a

 
 
 
 
 
 
 
 
 
 
 
 
s

 

 

Fig. 10. Contours for problem (1) with non-increasing
concave utility function and the linear incentive
strategy

5. CONCLUSIONS

In this paper, the traffic rate control problem
for a kind of network systems is discussed. The
networking models based on elastic and non-
elastic traffic are considered and the valid incen-
tive Stackelberg strategies are proposed. It is a
quite new way that the networking traffic control

problem is dealt with by using the tool of game
theory.
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