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Abstract: In this contribution, variance properties ofL2 model reduction are studied. That
is, given an estimated model of high order we study the resulting variance of anL2 reduced
approximation. The main result of the paper is showing that estimating a low order output
error (OE) model viaL2 model reduction of a high order model gives asmaller variance
compared to estimating a low order model directly from data in the case of undermodeling.
This has previously been shown to hold for FIR (Finite Impulse Response) models, but is in
this paper extended to general linear OE models.
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1. INTRODUCTION

Model reduction has been subject to considerable in-
terest, both from a modeler’s perspective and from a
control designer’s. There exists quite a wide range of
alternatives when performing model reduction. This
paper studies one of these methods, namelyL2 model
reduction.L2 model reduction is a topic which has
been studied by a large number of people; early ref-
erences are Wilson (1970) and Aplevich (1973) and
two more recent once are Spanoset al. (1992) and
Ferranteet al. (1999). Most papers in the area of
model reduction are focused on developing algorithms
for different types of reduction methods or analyzing
numerical properties of existing algorithms. This pa-
per, on the other hand, deals with the variance aspects
of theL2 model reduction. We analyze the covariance
of low order models obtained throughL2 model re-
duction of high order ones and compares the result
with direct estimation of a low order model.

One motivation for this study is that low order models
with error bounds are good alternatives for control de-
signers, since they lead to less complicated controllers.
Ninness and Goodwin (1995) study this from a system
identification perspective, i.e., estimating low order

models with tight error bounds, where the model and
its error bound is used for control design.

In the system identification literature, there have been
a couple of ideas on how to utilize model reduction
like methods to achieve good low order models. In
Hsia (1977), three rather similar two-step approaches
to identification are given. Zhu and Backx (1993)
propose a way of estimating models by starting from
a high order ARX model, which is then reduced to an
OE model using a reduction method close toL2 model
reduction. In these two publications no analysis of the
variance of the low order model is given. The number
of contributions with a clear variance perspective on
model reduction seems to be rather limited. Two of the
first papers in this directions are Porat and Friedlander
(1985) and Porat (1986). Here ARMA estimation
based on sample covariances is studied. The approach
taken has strong connections with the model reduction
approach of this contribution. Only a limited number
of references found, deal with the case when an input
signal is present in the identification setup. These
are Söderström et al. (1991), Wahlberg (1989),
Wahlberg (1987), and our previous contributions in
this area (Tjärnström and Ljung, 2000; Tj¨arnström,
2000; Tjärnström and Ljung, 2001). In Tj¨arnström
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and Ljung (2000) it was (among other things) shown
that estimating a low order (undermodeled) FIR model
by L2 reduction of a high order model gives strictly
lower variance compared to estimating the low order
model directly from data. This contribution extends
the previous result to hold for general linear output
error models, which is a much stronger result.

The outline of the paper is as follows. The next sec-
tion covers the basic identification setup and notation.
The tools used to calculate the variance ofL2 re-
duced models are summarized in Section 3. Section 4
presents and proves the main result. An illustrating
example is presented in Section 5, and conclusions are
given in Section 6.

2. PREDICTION ERROR METHODS

Throughout the paper, we denote the input signal by
u(t), the output signal byy(t), andN is the total
number of measured data. We assume thaty(t) is
generated according to

y(t) = G0(q)u(t) + e(t) (1)

whereG0(q) is a linear time-invariant system, usually
referred to as the “true system”,q is the discrete-time
shift operator, i.e.,qu(t) = u(t+ 1). Furthermore, we
assume that the additive noise,e(t), is a zero-mean,
white noise sequence, independent of the input having
a variance equal toλ.

Output error (OE) models are fitted to the mea-
sured data. These models are parameterized by ad-
dimensional real-valued parameter vectorθ, i.e.,

y(t) = G(q, θ)u(t) + e(t), (2)

where

G(q, θ) =
B(q, θ)
F (q, θ)

, (3)

B(q, θ) = b1q
−nk + · · ·+ bnbq

−nk−nb+1, (4)

F (q, θ) = 1 + f1q
−1 + · · ·+ fnf q

−nf , (5)

θ =
(
b1 . . . bnb f1 . . . fnf

)T
. (6)

If F = 1, the model is said to be of finite impulse
response (FIR) type. The true system is said to belong
to the model class if, for someθ = θ0, it holds that
G0(q) = G(q, θ0).

The loss function is defined as the sample mean of the
squared sum of the prediction errors (in this case the
output errors)

VN (θ) =
1

2N

N∑
t=1

ε2(t, θ), (7)

ε(t, θ) =y(t)− ŷ(t|θ) = y(t)−G(q, θ)u(t). (8)

The estimate ofθ is taken as the minimizer of (7)

θ̂N = arg min
θ
VN (θ) (9)

i.e., we use prediction error methods (PEM). The basic
result is then (Ljung, 1999, Chapter 8) that under weak
conditions

θ̂N → θ∗ = arg min
θ

1
2

Ēε2(t, θ), asN →∞. (10)

HereĒf(t) = limN→∞
1
N

∑N
t=1 E f(t). That is,θ̂N

converges to the best model provided by the model
class. (If the minimizer is not unique, the convergence
will be to some value in the set of minimizers.)

By undermodeling a system, we mean that there exists
no θ = θ∗ such thatG(q, θ∗) = G0(q). Therefore,
in case of undermodeling, the prediction errors are
correlated with the input via

ε(t, θ∗) = (G0(q)−G(q, θ∗))u(t) + e(t)

= G̃(q, θ∗)u(t) + e(t).
(11)

The limiting loss function (asN →∞) is denoted

V̄ (θ) =
1
2

Ēε2(t, θ). (12)

Moreover, denote the first and second order derivatives
of V̄ (θ), evaluated atθ∗ by

V̄
′
(θ∗), V̄

′′
(θ∗) (13)

and similarly for the derivative ofVN (θ). The expres-
sion for the distribution of the estimate is based on the
central limit theorem, see (Ljung, 1999, Chapter 9)

√
N(θ̂N − θ∗) ∈ AsN(0, Pθ), (14)

where

Pθ = λ
[
V̄
′′
(θ∗)

]−1

Q
[
V̄
′′
(θ∗)

]−1

(15)

Q = lim
N→∞

N · E{
[
V
′

N (θ∗)
] [
V
′

N (θ∗)
]T
}. (16)

To evaluate these derivatives, the negative gradient of
the prediction errors needs to be defined

Ψ(t, θ) = − d

dθ
ε(t, θ), (17)

and also

Ψ
′
(t, θ) = − d

dθ
Ψ(t, θ). (18)

By simple calculations (cf. Ljung (1999, Chapter 9))
we get

Q = lim
N→∞

1
N

N∑
t=1

N∑
s=1

EΨ(t, θ∗)ε(t, θ∗)

×ε(s, θ∗)ΨT (s, θ∗)

(19)

and

V̄
′′
(θ∗) = ĒΨ(t, θ∗)ΨT (t, θ∗)− ĒΨ

′
(t, θ∗)ε(t, θ∗).

(20)
The equations (15) - (20) constitute the basis for the
calculation of the covariance of low order models.
When the true system actually lies in the model class,
the covariance expression (15) simplifies to

Pθ = λ
[
ĒΨ(t, θ0)ΨT (t, θ0)

]−1
. (21)

The calculation of the distributions for other statistics,
such asG(eiω, θ̂N ), is based on a linear approximation



of the mapping from the parameter distribution given
by (14) to the statistic of interest. This mapping is
usually referred to as Gauss’ approximation formula.
It states that if̂θN is sufficiently close toθ∗ = E θ̂N ,
the following approximation is valid

Cov f(θ̂) ≈
[
f ′(θ∗)

]
Pθ
[
f ′(θ∗)

]T
≈
[
f ′(θ̂N )

]
Pθ
[
f ′(θ̂N )

]T
.

(22)

3. MODEL REDUCTION

This section contains a brief summary of some model
reduction results presented in Tj¨arnström and Ljung
(2000) and Tjärnström (2000). The covariance ex-
pression for a reduced model given below is the foun-
dation for the derivation of the main result in the next
section.

Let two model classesM1 andM2 be given. These
are parameterized byθ and η, respectively. Assume
that a modelM1(θ) is estimated and that the param-
eter estimate,̂θ, and its covariance matrix,Cov θ̂, is
available. The modelM1(θ̂) is subjected to model
reduction toM2(η), described by a loss functionJ ,
and the parameterŝθ andη

η̂ = arg min
η
J(η, θ̂). (23)

It is also assumed thatJ is twice continuously differ-
entiable. Letη∗ be defined from

η∗ = lim
N→∞

η̂, (24)

andθ∗ from (10). Then the low order modelη̂ has an
asymptotic covariance given by

Cov η̂N ≈ [J
′′

ηη(η∗, θ∗)]−1[J
′′

ηθ(η
∗, θ∗)]

× Cov θ̂ [J
′′

θη(η∗, θ∗)][J
′′

ηη(η∗, θ∗)]−1.

(25)

This expression is derived via Gauss’ approximation
formula (22) in Tjärnström and Ljung (2000).

When consideringL2 model reduction, the loss func-
tion equals

J(η, θ) =
1

4π

∫ 2π

0

|G(eiω , θ)−G(eiω , η)|2Φu(ω)dω,

(26)
whereΦu(ω) is the spectrum of the input. By the use
of Parseval’s formula, (26) can be rewritten according
to

J(η, θ) =
1
2

Ē [(G(q, θ) −G(q, η))u(t)]2

=
1
2

Ē
(
G̃(q, η, θ)u(t)

)2

=
1
2

Ēγ2(t, η, θ)

(27)

HereG̃(q, η, θ) = G(q, θ)−G(q, η) is the model error
andγ(t, η, θ) = G̃(q, η, θ)u(t) are the the residuals
from the reduction step. The loss function (27) is
studied closer in the next section.

In Tjärnström and Ljung (2000) and Tj¨arnström
(2000), the expression (25) is used to analyze the
variance properties ofL2 model reduction. The basic
results are:

• When estimating finite impulse response models
of low order (undermodeling), it is strictly better
to estimate the low order model by model reduc-
tion of a high order model compared to estimat-
ing the low order model directly from data.
• When estimating output error models (of correct

order), nothing is lost in terms of variance, when
getting the estimate via reduction of a high or-
der model compared to estimating the low order
model directly from data.

It is the first of these results that is generalized to hold
for general linear undermodeled output error models
in this contribution.

The tool (25) is also used in Tj¨arnström and Ljung
(2001) to study a two-step least-squares procedure for
estimating the system dynamics. Here a covariance
expression is derived for the final estimate and opti-
mization issues around this are discussed.

4. MAIN RESULT

Before presenting the main result of the paper, the
difference between thedirect estimate and there-
ducedestimate must be made clear. The direct esti-
mateG(q, η̂d) of the system is obtained by directly
minimizing the loss functionVN (η) defined in (9)
from measured data. On the other hand, the reduced
estimateG(q, η̂r) is obtained by first estimating a high
order modelG(q, θ̂) that minimizesVN (θ) in (9) and
then reducing this estimate byL2 model reduction
defined byJ(η, θ̂) in (26).

Note: When comparing the variance expressions for
the direct and the reduced estimate, the expectation is
taken overboth e andu. Therefore it is essential to
use the true input spectrumΦu as weighting in theL2

reduction, and not an estimate of it like the absolute
square of the FFT of the input sequence used. If the
latter is used, the results changes. For finite impulse
response models, it is easy to see that the reduced
and the direct estimates are identical in this case, see
(Tjärnström and Ljung, 2000; Tj¨arnström, 2000).

Theorem 1.Assume that data is generated according
to the assumptions in Section 2. Let a high order OE
model,G(q, θ), be parameterized such that there exists
a uniqueθ = θ0 giving G(q, θ0) = G0(q), and let
η parametrize a low order OE model,G(q, η). Then
by first estimatingG(q, θ) by minimizing (9) and then
reducingG(q, θ̂) by L2 model reduction according to
(26) we get a modelG(q, η̂r) with Cov η̂r = Pr. Also
assume that a low order modelG(q, ηd) with the same
parameterization asG(q, ηr) is estimated directly by



minimizing (9). This model is denoted byG(q, η̂d)
havingCov η̂d = Pd. Then it holds that

Pr ≤ Pd.

Note that since the existence of a uniqueθ0 that
minimizesV̄ (θ) is assumed, it follows thatθ∗ = θ0

in (10). It is important to note thatη∗d = η∗r . The
reason for this is that both estimates asymptotically
minimize the same criterion, i.e.,̄V (η) given by (12).
In the followingη∗d andη∗r are therefore replaced by
η∗.

4.1 Direct estimate

To prove Theorem 1, some expressions involving the
covariance matrices for the two estimates are needed.
We start by looking at the covariance expression (15)
for the low order model̂ηd.

In the special case of undermodeling for OE models
we are considering, it is possible to simplify the ex-
pression forQ in (19). Using (11) we get

Q = lim
N→∞

1
N

N∑
t=1

N∑
s=1

E Ψ(t, η∗)G̃(q, η∗)u(t)

× G̃(q, η∗)u(s)ΨT (s, η∗)

+ lim
N→∞

1
N

N∑
t=1

N∑
s=1

E Ψ(t, η∗)e(t)

× e(s)ΨT (s, η∗)

+ lim
N→∞

1
N

N∑
t=1

N∑
s=1

2 E Ψ(t, η∗)G̃(q, η∗)u(t)

× e(s)ΨT (s, η∗) (28)

Sincee is white and independent ofu the last term
vanishes and the second term can be simplified

Q = lim
N→∞

1
N

N∑
t=1

N∑
s=1

EΨ(t, η∗)G̃(q, η∗)u(t)

×G̃(q, η∗)u(s)ΨT (s, η∗)

+ lim
N→∞

λ

N

N∑
t=1

EΨ(t, η∗)ΨT (t, η∗) (29)

Continuing to work with the first term in (29) (from
now on denoted byS) we find that

S = lim
N→∞

1
N

E

(
N∑
t=1

Ψ(t, η∗)G̃(q, η∗)u(t)

)

×
(

N∑
t=1

Ψ(t, η∗)G̃(q, η∗)u(t)

)T
≥ 0

(30)

From the definition of̄E we also have that the second
term equals

λĒΨ(t, η∗)ΨT (t, η∗). (31)

That is, (29), can be written as

Q = λĒΨ(t, η∗)ΨT (t, η∗) + S, (32)

whereS is positive semidefinite. Finally we simplify
the expression (20) by utilizing thate andu are inde-
pendent

V̄
′′
(η∗) = ĒΨ(t, η∗)ΨT (t, η∗)

− ĒΨ
′
(t, η∗)

(
G̃(q, η∗)u(t) + e(t)

)
= ĒΨ(t, η∗)ΨT (t, η∗)

− ĒΨ
′
(t, η∗)G̃(q, η∗)u(t). (33)

Expressions (15), (32), and (33) together give the
covariance of̂ηd, i.e.,

Pd =
[
ĒΨ(t, η∗)ΨT (t, η∗)

−ĒΨ
′
(t, η∗)G̃(q, η∗)u(t)

]−1

×
[
λĒΨ(t, η∗)ΨT (t, η∗) + S

]
×
[
ĒΨ(t, η∗)ΨT (t, η∗)

−ĒΨ
′
(t, η∗)G̃(q, η∗)u(t)

]−1

.

(34)

4.2 Reduced estimate

To calculate the variance of the reduced order model
we need to derive the expressions forJ ′′ηη(η∗, θ0) and
J ′′
ηθ̂

(η∗, θ0) (see (25)). Taking derivatives of (27) gives

J ′η(η, θ) =− ĒΨ(t, η)γ(t, η, θ) (35)

J ′′ηη(η, θ) =ĒΨ(t, η)ΨT (t, η)

− Ē
d

dη
Ψ(t, η)γ(t, η, θ) (36)

J ′′ηθ(η, θ) =− ĒΨ(t, η)ΨT (t, θ) (37)

Note that since the true system belongs to the model
class parameterized byθ, thenG(q, θ0) = G0(q) and
it follows that

γ(t, η, θ0) =(G(q, θ0)−G(q, η))u(t)
=(G0(q)−G(q, η))u(t)

=G̃(q, η)u(t) (38)

This gives

J ′′ηη(η∗, θ0) =ĒΨ(t, η∗)ΨT (t, η∗)

− ĒΨ
′
(t, η∗)G̃(q, η∗)u(t) (39)

J ′′ηθ(η
∗, θ0) =− ĒΨ(t, η∗)ΨT (t, θ0) (40)

Expressions (21), (25), (39), and (40) together give the
covariance of̂ηd, i.e.,

Pr =λ
[
ĒΨ(t, η∗)ΨT (t, η∗)

−ĒΨ
′
(t, η∗)G̃(q, η∗)u(t)

]−1

×
[
ĒΨ(t, η∗)ΨT (t, θ0)

]
×
[
ĒΨ(t, θ0)ΨT (t, θ0)

]−1

×
[
ĒΨ(t, θ0)ΨT (t, η∗)

]
×
[
ĒΨ(t, η∗)ΨT (t, η∗)

−ĒΨ
′
(t, η∗)G̃(q, η∗)u(t)

]−1

.

(41)



4.3 Proof of the main result

After simplifying the expressions for the covariance
matrices (34) and (41), the main result can now be
proved. Showing thatPr ≤ Pd is equivalent to show-
ing that

λ
[
ĒΨ(t, η∗)ΨT (t, θ0)

] [
ĒΨ(t, θ0)ΨT (t, θ0)

]−1

×
[
ĒΨ(t, θ0)ΨT (t, η∗)

]
≤ λĒΨ(t, η∗)ΨT (t, η∗) + S

(42)

Moreover, sinceS is positive semidefinite it is suffi-
cient to show that[

ĒΨ(t, η∗)ΨT (t, θ0)
] [

ĒΨ(t, θ0)ΨT (t, θ0)
]−1

×
[
ĒΨ(t, θ0)ΨT (t, η∗)

]
≤ ĒΨ(t, η∗)ΨT (t, η∗)

(43)

In order to complete the proof of the main result we
need a result of the Schur complement (Zhang, 1999,
Theorem 6.13).

Theorem 2.LetA, B, andC be real matrices, where
A is ann×n positive definite matrix andB is ann×m
matrix. Then for any positive semidefiniteC (m×m)(

A B

BT C

)
≥ 0 ⇔ C ≥ BTA−1B.

Since every covariance matrix isat least positive
semidefinite it follows that

0 ≤ Ē
(

Ψ(t, θ0)
Ψ(t, η∗)

)(
ΨT (t, θ0) ΨT (t, η∗)

)
=
(

ĒΨ(t, θ0)ΨT (t, θ0) ĒΨ(t, θ0)ΨT (t, η∗)
ĒΨ(t, η∗)ΨT (t, θ0) ĒΨ(t, η∗)ΨT (t, η∗)

)
(44)

By noting thatĒΨ(t, θ0)ΨT (t, θ0) is positive definite
due to the assumption thatθ0 is unique, Theorem 2 is
applicable. Direct application of this shows that (44)
is equivalent to (43), and the main result follows, i.e.,
Pr ≤ Pd.
ForPr = Pd to hold, two things have to be fulfilled.
First of all S = 0 is needed. Secondly, equality in
(43) has to hold. These things are obviously fulfilled if
the model error,̃G, is zero, and no other configuration
fulfilling both of these conditions is obvious. It is
worth noting that the difference betweenPr andPd
grows withS, andS grows with the bias error squared
according to (30).

5. ILLUSTRATING EXAMPLE

This example is included to illustrate two things. First,
to show that the covariance matrix of theL2 reduced
estimate really is smaller than the covariance matrix
for the direct estimate. Second, to illustrate that the

difference in size is linked to the size of the model
error.

Let the true system be given by

y(t) =
B(q)
F (q)

u(t) + e(t),

where

B(q) =2q−1 − q−2

F (q) =1− 0.7q−1 + 0.52q−2

− 0.092q−3 − 0.1904q−4.

The input,u, and noise,e, are jointly independent,
zero-mean, white noise processes, both with variance
1. The system is simulated withN = 250 data
and low order models of OE type are calculated. To
illustrate how the size of the model error affects the
result, 3 levels of approximation are calculated. This
is represented by estimating models of orders{nb =
1, nf = 1, nk = 1}, {nb = 2, nf = 2, nk = 1},
and{nb = 3, nf = 3, nk = 1}, respectively. The
approximations obtained are shown in the Bode plot
in Figure 1. As seen from the Bode plot, both the 2nd
and 3rd order approximations give reasonably sized
model errors, while the first order approximation is
very bad. From data, both the direct and the reduced
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Fig. 1. True system (solid), 3rd order approximation
(dash-dotted), 2nd order approximation (dotted),
1st order approximation (dashed).

estimates are calculated. The reduced order models
are calculated from an estimated model of true order,
i.e., {nb = 2, nf = 4, nk = 1}. This is repeated
250 times and from the obtained estimates, Monte
Carlo based estimates of the covariance matrices are
calculated. From each (of the six) covariance matrices
the eigenvalues are determined to represent the size of
the covariance matrices. The results are presented in
Table 1. From the table it is immediate that there is
a difference in size of the covariance matrix between
the two different methods. The difference can be large
as in the OE(1,1,1) case (where the bias is large) or
rather small as in the OE(2,2,1) and the OE(3,3,1) case
(where the bias is smaller).



Table 1. Monte Carlo estimates of the
eigenvalues of the covariance matrices for
OE models of order 1, 2 and 3. Both the di-
rect and the reduced estimates are included.
“d” is short fort direct estimate and “r” is

short for reduced estimate.

Order λ1 λ2 λ3 λ4 λ5 λ6

d 1, 1, 1 2.643 0.216 - - - -
r 1, 1, 1 0.971 0.076 - - - -
d 2, 2, 1 1.866 0.918 0.088 0.040 - -
r 2, 2, 1 1.696 0.868 0.077 0.037 - -
d 3, 3, 1 241.0 3.266 0.889 0.381 0.037 0.023
r 3, 3, 1 176.8 2.193 0.841 0.339 0.033 0.022

6. CONCLUSIONS

In this contribution we have shown that it isnever
better to estimate a low order OE model by direct
estimation, compared to estimating the model using
a two step procedure. This procedure consists of first
estimating a high order OE model which is subjected
to L2 model reduction to produce a low order model.
It has also been pointed out that the difference grows
with the bias error.

This result clearly has an impact on the way low order
modeling should be addressed. By starting with a high
order model which is then reduced to low order, bias
errors can be tracked, and at the same time variance
is kept small. Applications of this are obvious, e.g., in
robust control where one would like to use low order
models with tight error bounds to get simple regulators
with good performance.
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Söderström, T., P. Stoica and B. Friedlander (1991).
An indirect prediction error method for system
identification.Automatica27, 183–188.

Spanos, J. T., M. H. Milman and D. L. Mingori (1992).
A new algorithm forL2 optimal model reduction.
Automatica28(5), 897–909.

Tjärnström, F. (2000). Quality Estimation of Approx-
imate Models. Licentiate thesis LIU-TEK-LIC-
2000:06. Department of Electrical Engineering,
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