
INCENTIVE STACKELBERG STRATEGIES
FOR FLOW CONFIGURATION OF PARALLEL

NETWORKS

Yuanwei Jing ∗ Khosrow Sohraby ∗∗

Georgi M. Dimirovski ∗∗∗

∗ Faculty of Information Science and Engineering,
Northeastern University, Shenyang, 110006, P.R.China
∗∗ Computer Science Telecommunications, University of

Missouri - Kansas City, Kansas City, MO 64110, U.S.A.
∗∗∗ Faculty of Electrical Engineering, St. Cyril and St.

Methodius University, Skopje, MK-91000, R.Macedonia

Abstract: This work consider the problem of flow control using incentive strategy
in Stackelberg game theory. The network model employed here is that users
route their flows from a common source to a common destination node, each of
them trying to optimize its individual performance objective. First, the existing
Stackelberg routing strategy is briefly introduced. And then, the linear Stackelberg
incentive strategies are presented for both single-follower and multi-follower
systems, by which the leader (manager) force the followers (the noncooperative
users) adopt the team optimal flow configuration as their reply strategies. It
is shown that the incentive strategy improves the existing Stackelberg routing
strategy. A numerical example is given to illustrate the results of the strategy.
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1. INTRODUCTION

The modern telecommunications networks are ex-
amples of large-scale complex systems that carry
a wide variety of traffic classes, serve many users,
and may appear in various structures. System of
parallel links represents an appropriate model for
seemingly unrelated networking problems. Con-
sider, for example, a network in which resources
are pre-allocated to various routing paths that
do not interfere. Such case is common in mod-
ern networking. In broadband networks, band-
width is separated among different virtual paths,
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resulting effectively in a system of parallel and
non-interfering “link” between source/destination
pairs. Another example is that of internet work-
ing, in which each “link” models a different sub-
network.

Traditional centralized control schemes do not
scale well as the size of the network increases.
Thus, control of modern networks is usually per-
formed in a decentralized fashion. The network,
generally, is shared by a set of noncooperative
users, each sending its flow in a way that optimizes
its individual performance objective. Control of
user flows is decentralized, that is, each user is
responsible for controlling its own flow. Control
decisions are made independently and the users do
not make joint control decisions. Each user has its

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



individual performance objective to be optimized.
The self-optimizing behavior of the users leads to
a dynamic behavior of the network, which is the
so-called noncooperative networking (see Korilis
1995) that applies to various practical networks.
The most common example of noncooperative
network is the Internet (see Jacobson 1988).

Game theory (see Basar and Olsder 1982, Myerson
1991) provides the systematic framework to treat
the dynamic behavior of noncooperative networks.
During the last decade, the area of networking
games has been receiving increasing attention
due to the realization that single-user models are
not sufficient to capture the complex interactions
among various network controllers. The study
of noncooperative networks can be categorized
as network control, network design, and network
management problems (Korilis 1995).

Two major concepts in game theory, Nash equi-
libria and Stackelberg equilibria, have been em-
ployed into the study of noncooperative networks.
For Nash equilibria, among many others, Orda,
Rom and Shimkin (1993) dealt with the opti-
mal capacity allocation problem. Bertsekas and
Gallager (1992) gave out a simple and intuitive
solution in the single-user case. And then Ko-
rilis (1995) generalized this result to the case of
noncooperative routing. Meanwhile, Stackelberg
equilibria strategies have also been investigated
in the context of flow control (Douligeris and
Mazumdar 1989), and routing (Economides and
Silcester 1990). In these references, however, the
leader in the Stackelberg models was a selfish user
concerned about its own rather than the system’s
performance. Korilis (1995, 1996) emphasized the
overall network performance and the interests of
followers excessively, while did not attempt to
optimize the cost of the leader.

The main contribution of this paper is that a
novel strategy has been proposed, by introducing
the incentive concept of game theory, to ensure
the achievement of team equilibria of the entire
network system while the benefit of manager is
considered. The method presented in this paper
improves the existing Stackelberg routing strategy
introduced by Korilis (1995, 1996).

2. MAIN SYMBOLS AND GENERAL
ASSUMPTIONS

Consider the model of one source node and one
destination node with several links between them,
which is shared by several users who send their
data flow on links from source to destination. For
convenience, the main symbols used in the paper
are introduced.

i = 0, 1, · · · , I – The index of network users

l = 1, · · · , L – The index of communication links
cl – The allocated capacity of link l

C =
L∑

l=1

cl – The total capacity of the network

c = (c1, · · · , cL) – The capacity configurations
ri – The average rate for demand of user i

R =
I∑

i=0

ri – The total demand of all users

R−i =
I∑

j=0,j 6=i

rj – The total demand of all users

except for user i
f i

l – The expected flow of user i sends on link l
fl = (f0

l , f1
l , · · · , f I

l ) – The flow vector of all users
on link l

fl =
I∑

i=0

f i
l – The total flow of all users on link l

fi = (f i
1, · · · , f i

L) – The routing strategy vector
of user i on each link

F i = {fi ∈ RL : 0 ≤ f i
l ≤ cl,

L∑

l=1

f i
l = ri} – The

strategy space for users i
f = (f0, · · · , fI) – The routing strategy profile of
all users

Assumption 1. The following assumptions are made.

1. c1 ≥ c2 ≥ · · · ≥ cL, 2. r1 ≥ r2 ≥ · · · ≥ rI ,

3. C > R, 4.

L∑

l=1

fl = R.

Remark 2. The capacity configuration c depends
on the actual link capacity and not on the link
“labels”, so one can rearrange the link “labels”
to satisfy the assumption. The second assumption
only involves the throughput demands of user i,
1 ≤ i ≤ I. User 0 will be considered as a manager
in the Stackelberg strategy problem. C > R is
assumed for the stability of the overall system.

3. PROBLEMS

The main problem here is to minimize the total
cost J(f) of the network. Due to its simplicity,
the M/M/1 queueing model is concentrated. The
time-delay function on link l is described as

Tl(fl) =





1
cl − fl

, fl < cl

∞ , fl ≥ cl

. (1)

The cost function of user i sending flow on link l
can be chosen as

J i
l (fl) = f i

l Tl(fl) =
f i

l

cl − fl
, for fl < cl.(2)



In the case fl ≥ cl, no matter how much flow user
i send, the delay is infinity as well as the cost
function.

The summation of J i
l (fl) on l, denoted by J i(f),

is taken as the total cost function of user i, which
is described as follows.

J i(f) =
L∑

l=1

J i
l (fl) =

L∑

l=1

f i
l

cl − fl
. (3)

The total cost of the network is

J(f) =
I∑

i=0

J i(f) =
I∑

i=0

L∑

l=1

f i
l

cl − fl

=
L∑

l=1

1
cl − fl

I∑

i=0

f i
l =

L∑

l=1

fl

cl − fl
.

(4)

which depends only on the link flow configuration
(f1, · · · , fL). It is evident that J(f) is a convex
function of (f1, · · · , fL). Therefore, there exists a
unique link flow configuration (f∗1 , · · · , f∗L) min-
imizing the total cost. Certainly, the conditions
f∗l ≥ 0 and

∑L
l=1f

∗
l = R must be satisfied.

This is the team solution of the classical routing
optimization problem. There is a necessary and
sufficient condition to guarantee the optimization
of (f∗1 , · · · , f∗L).

Lemma 3. (f∗1 , · · · , f∗L), f∗l ≥ 0, l = 1, · · · , L,∑L
l=1f

∗
l = R, is the network team optimum, if

and only if there exist λ∗ and µ∗ = (µ∗1, · · · , µ∗L),
µ∗l ≥ 0 such that

∂J(f)
∂fl

|f∗
l
− λ∗ − µ∗l = 0, µ∗l f

∗
l = 0, (5)

where λ∗ and µ∗ are the Lagrange multipliers.

One can see that the conditions (5) in the above
lemma are equivalent to the following:

λ∗ =
∂J(f)
∂fl

|f∗
l
, if f∗l > 0, (6)

λ∗ ≤ ∂J(f)
∂fl

|f∗
l
, if f∗l = 0. (7)

From (4), the conditions (6) and (7) for M/M/1
queue model can be written as

λ∗ =
cl

(cl − f∗l )2
, if f∗l > 0, (8)

λ∗ ≤ 1
cl

, if f∗l = 0. (9)

Let f∗ be the routing strategy profile of all
users according to the optimal flow configuration
(f∗1 , · · · , f∗L) satisfying (8). and (9). Then, for any
strategy profile f ∈ F , J(f∗) ≤ J(f).

Korilis (1995, 1996) presented the following struc-
ture of the network optimum (f∗1 , · · · , f∗L).

f∗l =





cl −
( L∗∑

n=1

cn −R

) √
cl∑L∗

n=1

√
cn

,

l = 1, · · · , L∗
0, l = L∗ + 1, · · · , L

. (10)

Note that the flow f∗l on link l is decreasing in the
link number l, i.e. f∗1 ≥ · · · ≥ f∗L (Orda it et al
1993). Therefore, there exists some link L∗ such
that f∗l > 0 for l ≤ L∗ and f∗l = 0 for l > L∗.

Remark 4. For given configuration (f̃1, · · · , f̃L), it
is evident that there is a routing strategy profile
f̃ by which the network total cost is J (̃f). Noting
the structures of f, fi and fl, fl, it can be shown
that there is a number of routing strategy profile f,
according to (f̃1, · · · , f̃L), which make the network
total cost J(f) = J (̃f). Those strategy profile f are
collected in the set

F̃ =
{
f ∈ F :

I∑

i=0

f i
l =

I∑

i=0

f̃ i
l for ∀l

}
. (11)

The case mentioned in Remark 4 is applicable
to (f∗1 , · · · , f∗L) ∈ F ∗. This case, which was not
pointed out by Korilis (1995, 1996), is very impor-
tant in the discussion of Stackelberg strategies.

4. STACKELBERG MODEL OF THE FLOW
CONFIGURATION PROBLEMS

As remarked in Section 3, for the network optimal
flow configuration (f∗1 , · · · , f∗L), there exists a set
of strategy profiles. How to achieve the network
optimum? Which is the best profile in F̃? Korilis
(1996) provided the answer to the first question,
by means of the Stackelberg routing games.

Consider the simplest case of a Stackelberg rout-
ing game, where the network is shared by a single
self-optimizing user and a user who aims to opti-
mize the overall network performance by achiev-
ing the network optimum, and has knowledge of
the behavior of other user.

4.1 Stackelberg Routing Strategy

Assume that the network optimal flow configu-
ration (f∗1 , · · · , f∗L) has been obtained as in Sec-
tion 3. The purpose is to realize it under some
strategies of the users. If the users are in the coop-
erative situation, it is easy to achieve the optimum
as action in team. In practical systems as well as
in the Stackelberg models, however, the situation
among the users (or between the leader and the
followers) is noncooperative. The role of manager



is very important to control the entire network.
His strategies will affect the overall system perfor-
mance as well as each user. The manager should
make such decision that the total flow sent on
link l by both leader and follower is equal to the
optimal configuration f∗l , 1 ≤ l ≤ L. Korilis (1995,
1996) dealt with such problem on basis of routing
strategy, i.e. the manager attempts to optimize
the system performance through the control of
its portion of the flow. In such case, when the
leader takes his flow strategy on link l as f0∗

l , the
follower’s flow on link l which minimizes his own
cost function must coincide with f∗l −f0∗

l , denoted
as f1∗

l . That is just the Stackelberg idea.

By using routing strategy, Korilis (1995, 1996)
presented a Stackelberg strategy in the form as

f0∗
l =





cl

∑L1

n=1 f∗n − r1

∑L1

n=1 cn

, l = 1, · · · , L1

f∗l , l = L1 + 1, · · · , L
, (12)

where L1 is some link that is determined by r1 as
follows. The flow f1

l the follower sends on link l is
decreasing in the link number l. Therefore, there
exist some link L1 such that f1

l > 0 for l ≤ L1

and f1
l = 0 for l > L1, that is, the follower sends

his flow precisely over the links in {1, · · · , L1}. It
is also evident that L1 ≤ L∗.

As the rational reaction of the follower to the
strategy (12), the follower’s sends his flow over
the network system as

f1∗
l =





f∗l − cl

∑L1

n=1 f∗n − r1

∑L1

n=1 cn

,

l = 1, · · · , L1

0, l = L1 + 1, · · · , L

. (13)

The Stackelberg strategy pair (f0∗
l , f1∗

l ) makes the
overall system performance optimal. There are,
however, some issues which should be considered:

(1) The leader has to send flows to links whose
average time delays are higher, so as to
“tame” the follower.

(2) Under (f0∗
l , f1∗

l ), the value of the leader’s
cost function is much larger. For the purpose
of achieving f∗l , the leader has to sacrifice its
own throughput demand.

(3) When the flow that the leader wants to send
on the system is very small, he will not be
able to control the system. Especially, if the
manager is not the user of the system, i.e. he
has no flow to send, how will he manage the
overall system?

4.2 Incentive Stackelberg Strategy

In this subsection, a new Stackelberg strategy for
flow configuration will be proposed. At first, the

model should be improved. The cost function of
the overall network is still the same as before.
So the overall optimum is still (f∗1 , · · · , f∗L). As
a manager, the leader in the network considers
not only the overall network performance, but also
the benefit of the users including himself. So the
manager can choose any f from F ∗ as the proper
routing strategy profile of the network. Suppose
that the manager select fα ∈ F ∗. Then, there are

fα = (f0α, · · · , fIα), fiα = (f iα
1 , · · · , f iα

L ),

fαl = (f0α
l , · · · , f Iα

l ), fα
l =

I∑

i=0

f iα
l = f∗l .

To be able to control the followers and “tame”
them to f iα

l , the manager must possess the ability
to affect the followers in some way. There are two
ways to do so. One is to expand the manager’s
strategy as a function of the followers’ strategies,
by which the manager can adjust his strategy
depending on the followers’ actions. The other
way is to put a price on the followers’ cost func-
tions. Both these two ways were introduced as the
incentive mechanism.

To induct the followers act as the manager expects
and punish them when they deflect from the point
desired by the manager, the incentive strategy can
be chosen as

f0
l = f0α

l +
I∑

i=1

gi(f i
l , f

iα
l ), l = 1, · · · , L.(14)

To elucidate both the intuition behind the struc-
ture of the incentive strategy and the methodol-
ogy to derive it, the simplest case of two users
(the leader and the follower) incentive Stackelberg
routing game is dealt with here.

The simplest incentive strategy structure can be
the linear form in g(·, ·), such as

f0
l = f0α

l + Ql(f1
l − f1α

l ), l = 1, · · · , L, (15)

where (f0α
l , f1α

l ) is the expected solution of the
manager. It is evident that f0

l = f0α
l when f1

l =
f1α

l , if (15) is available.

Consider the follower’s cost function

J1(f) =
L∑

l=1

f1
l

cl − fl
=

L∑

l=1

f1
l

cl − f0
l − f1

l

. (16)

Substituting (15) into (16), there will be

J1(f) =
L∑

l=1

f1
l

cl − f0α
l −Ql(f1

l − f1α
l )− f1

l

.(17)

If the follower chooses f1α
l , then



J1(f∗α) =
L∑

l=1

f1α
l

cl − f0α
l − f1α

l

=
L∑

l=1

f1α
l

cl − f∗l
,(18)

where f∗α indicates that f iα
l , i = 0, 1, l =

1, · · · , L, have been taken as the final flow con-
figurations.

Now, it needs to be shown that there is a proper
Q such that

J1(f) > J1(f∗α), (19)

for any f1
l 6= f1α

l .

There would be two cases for the follower to chose
his flow configuration on link l: f1

l > f1α
l or

f1
l < f1α

l , if he were not to obey f1
l = f1α

l .

Theorem 5. There exist some Ql for (15) being a
incentive Stackelberg strategy to make (19) hold,
where Ql possesses the following structure.

Ql =





−1 , if f1α
l ≤ f1

l < r1

− cl

f1α
l

, if 0 < f1
l < f1α

l

. (20)

The proof is omitted.

Because of the fundmental assumption of Stackel-
berg game that the follower is a rational reaction
player, there is no possibility for the follower to
chose f1

l = 0.

4.3 Multi-Follower Incentive Stackelberg Routing
Game

The incentive Stackelberg strategy for flow con-
figuration presented for one-leader one-follower
system in Section 4.2 will be expanded to one-
leader multi-follower system under the assump-
tion of Nash equilibrium for the non-cooperative
self-optimizing users who play the follower role in
the routing game. Suppose also that the leader
select fα ∈ F ∗.

As the manager of the network system, the leader-
user shall proposes proper strategy to force the
follower-users adopting f iα

l , i = 1, · · · , I, l =
1, · · · , L, as their strategies in the flow config-
uration game. The linear incentive Stackelberg
strategy will be employed here.

f0
l = f0α

l + QT
l (fl − fαl ), l = 1, · · · , I,(21)

where Ql = (Q1
l , Q

2
l , · · · , QI

l )
T is parameter vec-

tor which should be determined such that (21)
can force the follower-users acting as the manager
expects.

In the case of one follower-user, Ql is a scale
parameter and can be determined by making (19)

hold. In the multi-follower case, however, the com-
plexity of formulations and calculations increases
rapidly making the problem difficult. One reason
is that the followers are non-cooperative and self-
optimizing users. To overcome the difficulty and
simplify the calculations, the Nash equilibrium
should be introduced among them. Contrary with
eq. (19), there should be

J i(f0(fi), fi, f−iα) > J i(f∗α), for ∀i, (22)

where f−iα = (f1α, · · · , f(i−1)α, f(i+1)α, · · · , fIα)
and f0(fi) indicates that f0 is a function of fi as
see in eq. (21) with Ql determined.

The following theorem states the result on this
question.

Theorem 6. There exists some Ql for (21) being
an incentive Stackelberg strategy to make (22)
hold, where Ql = (Q1

l , · · · , QI
l )

T possesses the
following structure.

Qi
l =




−1 , if f iα

l ≤ f i
l < ri

− cl

f iα
l

, if 0 < f i
l < f iα

l
. (23)

5. NUMERICAL EXAMPLE

Consider a numerical example of a system of
parallel links with capacity configuration c =
(12, 7, 5, 3, 2, 1), shared by I = 100 identical self-
optimizing users, with total demand r, and the
manager. This example was employed to illustrate
the Stackelberg routing strategy by Korilis (1995,
1996) in which the performance of the network
was under Stackelberg and Nesh scenaria. The
example there showed that the network perfor-
mance was always better under the Stackelberg
scenario. The cost of the manager was, however,
always higher under the Stackelberg scenario. The
reason is that the Stackelberg routing strategy is
only the open-loop strategy (see Basar et al 1982).
Figure 1 shows that the cost of leader under the
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Fig. 1. Leader cost as a function of total follower de-
mand, the low curve under the incentive Stackelberg
strategy, the up curve under the Stackelberg routing
strategy

proposed incentive Stackelberg strategy is much



less than that under the Stackelberg routing strat-
egy. Figure 2 shows that the performance of the
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Fig. 2. Total cost as a function of total follower demand

network will achieve the network optimum that is
the same as in Korilis’s work.

Furthermore, making some change in this exam-
ple, the network behavior could be shown clearly
as the network capacity increases. Three capac-
ity levels are considered in this example: c =
(18, 10.5, 7.5, 4.5, 3, 1.5), c = (24, 14, 10, 6, 4, 2),
c = (36, 21, 15, 9, 6, 3).
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Fig. 3. Behavior of leader cost as capacity increased

From Figure 3, one can see that, the limit of the
leader’s cost function will be a constant number,
for instance, 124.844 here, when the total follower
demand is closed to the total capacity. The more
the capacity is, the later the leader cost achieves
the limit. Therefore, the leader’s cost can be kept
under the limit.
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Fig. 4. Behavior of total network cost as capacity in-
creased

Figure 4 gives more information about the per-
formance of the network than Figure 2. It was
already seen from eq. (4) that the cost would be

infinite when the total follower’s demand was up
to the network capacity.

The result of this example indicates that the
leader of the network will be able to manage the
entire system by using the incentive Stackelberg
strategy at a low cost level.

6. CONCLUSION

The flow configuration problems of a network of
parallel links were considered by means of the
concept of incentive strategy. A new method was
proposed to solve the problem on achieving team
optimal solution in the entire noncooperative net-
work. The proposed strategy overcomes some of
the problems of existing Stackelberg strategy un-
der which the leader cannot get the benefit from
the game. Essentially, in the past work, the strat-
egy is a routing strategy which cannot overcome
the problems of existing strategy perfectly. When
the leader does not have any flow to send into the
network, he cannot construct a routing strategy.
In such case, another type of strategy such as price
(or cost) routing strategy should be employed,
which will be investigated in future work.
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