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Abstract: In this paper a hierarchical structure of several artificial neural networks has
been developed for fault isolation purposes. Two different approaches have been
considered. The hierarchical structure is the same for both approaches, but one uses
multi-layer feedforward artificial neural networks and the other uses fuzzy neural
networks. A result comparison between the two architectures will be presented. It is
aimed to isolate multiple simultaneous abrupt and incipient faults from only single abrupt
fault symptoms. A continuous binary distillation column has been used as test bed of the
current approaches. Copyright  2002 IFAC
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1. INTRODUCTION

Process failures can potentially result not only on the
loss of productivity but also in the loss of expensive
equipment and, ultimately, of human lives. For these
reasons, there is a growing need for on-line fault
detection and isolation approaches in order to
increase reliability of such industrial processes.

In dynamical systems, faults may be divided into two
main classes: abrupt failures and incipient failures.
The incipient failures affect the process behaviour
slowly and may take a long time before being
detected. Conversely, abrupt failures give rise to
jumps in the process parameters, resulting in an
appreciable deviation from normal system
behaviours.

Recently, the use of artificial neural networks (ANN)
for fault detection and isolation purposes has
received increasing attention in both research and
application (Frank and Koppen-Seliger, 1997; Butler
et al., 1997; Calado and Sá da Costa, 1999; Patton, et
al., 1999; Altug et al., 1999; Aminian et al., 2000). In
some of these applications, ANNs are used to
examine the possible fault or faults in the process
under concern and give a fault classification signal to
declare whether or not the process is faulty (Chen,
1995).

ANNs can be used to overcome the difficulties of
conventional fault isolation techniques to deal with
nonlinear behaviours. Establishing an appropriate
training set allows the ANN to learn and generalise
for operating with future input data.
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However, fault symptoms concerning multiple
simultaneous faults are harder to learn than those
associated with single faults. Furthermore, the larger
the set of faults, the larger the set of fault symptoms
will be and, hence, the longer and less certain the
training outcome. In order to overcome this problem,
the proposed approach has a hierarchical structure of
three levels where several neural networks are used.
Thus, a large number of patterns are divided into
many smaller subsets so that the classification can be
carried out more efficiently. The adoption of a
hierarchical structure of neural networks approach
for fault isolation aims at development of an
architecture that can localise abrupt and incipient
single and multiple faults correctly, or at least with a
minimum misclassification rate and be easily trained,
from only single abrupt fault symptoms.

During the current studies a continuous binary
distillation column has been used as a test bed of an
approach consisting of a hierarchical structure of
classical feedforward ANNs and other approach
where the feedforward ANNs are replaced by fuzzy
neural networks (FNNs). These networks have been
achieved by adding a fuzzification layer to the
conventional feedforward neural networks (Calado
and Sá da Costa, 1999a). Therefore, a result
comparison between the two architectures will be
presented, showing the fuzzification layer influence
in the performance of the fault isolation approach
proposed in this paper.

The paper is organised as follows. Section 2 presents
an overall description of the fault isolation approach.
Section 3 shows some results achieved using the two
architectures mentioned above, as well as, a
comparison between those results. In Section 4 some
concluding remarks will be provided.

2. THE ARCHITECTURE OF THE FAULT
ISOLATION SYSTEM

In the current approach a hierarchical structure of
several artificial neural networks has been developed
for fault isolation purposes (Haykin, 1994; Nauck et
al., 1997; Calado and Sá da Costa, 1999). It is aimed
to isolate multiple simultaneous abrupt and incipient
faults from only single abrupt fault symptoms. The
hierarchical structure has three levels configuration
where several ANNs are used. Two different
approaches have been considered. The hierarchical
structure is the same for both approaches, but one
uses multi-layer feedforward artificial neural
networks and, the other uses fuzzy neural networks
(FNN) as depicted in Figure 1. It can be seen that the
fuzzy neural networks have been achieved by adding
a fuzzification layer to the conventional feedforward
neural networks as mentioned above.

The lower level consists of one neural network (NN)
where all variations (∆e) of the measured variables

are used as inputs. At the medium level a number of
NNs (structurally identical or different) that is equal
to the number of single fault scenarios considered,
are used. Each NN at the medium level is also fed
with all the measurement variables and each one is
associated with an output of the NN at the lower
level, corresponding to a particular single fault. The
upper level consists of an OR operation on the NNs
outputs at the medium level. The elements of the set
used in the OR operation are determined by the
outputs of the NN at the lower level. Thus, if the i-th
and j-th outputs of the NN at the lower level is taking
values close to 1, then the outputs of the i-th and j-th
NNs at the medium level form the elements used in
the OR operation. However, if only one output of the
NN at the lower level is taking a value close to 1,
then the corresponding NN in the medium level is
used to confirm that this fault is a single fault, or to
diagnose multiple faults. Obviously, the multiple
faults must include the one corresponding to the
output of the NN at the lower level.

In the first approach all the neurons use the sigmoid
function as their activation functions. In the second
fault isolation approach considered, as previously
mentioned, the adopted FNNs have an additional
fuzzy input layer that maps the increment of each
measurement into fuzzy sets. Therefore, the
fuzzification layer converts each input into the
quantity space, qf={ decrease, steady, increase} , by
association with three types of neurons. The
processing elements of the fuzzification layer related
to the fuzzy sets decrease and increase use the
complement sigmoid function and the sigmoid
function, respectively, as their activation functions.

On the other hand, the other processing elements of
the fuzzification layer related to the fuzzy set steady
use the Gaussian function. The hidden and output
layers processing elements use the sigmoid function
as their activation functions.

Both the lower level and the medium level networks
are made up of three layers. In the  first  approach the

Fig. 1. Hierarchical Structure of Fuzzy Neural
Networks.
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ANNs have an input layer, a hidden layer and an
output layer. The FNNs used in the second approach
have a fuzzification layer, a hidden layer, and an
output layer. All neural networks are trained using
the resilient backpropagation-learning algorithm
(Riedmiller and Braun, 1993).

The NN0 (lower level) training data is obtained from
the process single abrupt fault simulation, where all
abrupt faulty scenarios and the stationary operational
conditions are being considered. On the other hand,
the NNi (medium level) is trained using the data for
one single abrupt fault (the fault associated with the
corresponding NNi) and for all possible double
abrupt faults that the NNi will be able to diagnose.
This training data is obtained by adding the data for
the corresponding single abrupt faults considered.

In order to cope with process transient behaviours
due to normal set point regulator, the current fault
isolation approach should be coupled with a fault
detection system, as for instance in Mendes et al.
(2002).

In the next section a continuous binary distillation
column is used as test bed of the fault isolation
approaches described above. Furthermore, a result
comparison between both approaches is made.

3. CASE STUDY

A Continuous Binary Distillation Column, which is
described by (Ingham et al., 1994), has been used as
a test bed of the fault isolation systems proposed in
this paper. This process is shown in Figure 2, where a
column containing a total of eight theoretical plates
plus a reboiler is assumed, with feed entering on
plate 5. Surge drum and reboiler levels are controlled
by feedback control loops.

The fault isolation systems are based on a
hierarchical structure of several artificial neural
networks with the characteristics previously
presented. Hence, four measurement variables have
been used as input data to the fault isolation system.
These variables are the following: MD, hold-up in
surge drum; D, distillate flow rate; MB, hold-up in
reboiler; W, bottom flow rate. In order to achieve a
diagnosis of a fault or faults in the process, an
analysis of the output values from the neural network
at the lower level of the hierarchical structure, is
necessary.

If the number of nonzero outputs (output ≥ 0,5) in
NN0 is equal to 0, then it is assumed that no fault
occurred in the process under consideration.
Otherwise, the result of the fault isolation system is
considered to be the result of an OR operation (upper
level) on several NNi outputs in medium level, as
previously describe.

Fig. 2. Continuous Binary Distillation Column.

In the neuro fault isolation system considered all
ANNs are equal, with an input layer consisting of 4
neurons corresponding to the 4 measurement
variables. Furthermore, in the neuro-fuzzy fault
isolation system implemented all the FNNs are equal
too, with a fuzzification layer consisting of 12
processing elements arranged in 4 groups,
corresponding to the 4 measurement variables, with
each group contains 3 neurons corresponding to the
respective fuzzy sets. The number of neurons in the
hidden layer is determined by the complexities of the
relationships between the faults and the fault
symptoms. During the current study, following a trial
and error procedure, it was found that 10 hidden
processing elements could give good performance for
the both fault isolation system architectures under
concerned. However, further research will be
conducted in order to optimise the NN topology by
using neural networks pruning algorithms.

Moreover, since 4 single faults have been considered
(F1v, valve on pipe 4 blocked fully open; F2v, valve
on pipe 4 blocked fully closed; F3v, valve on pipe 5
blocked fully open; F4v, valve on pipe 5 blocked fully
closed) the output layer of each network is up of 4
neurons, each one corresponding to a fault. It was
also considered all possible double fault scenarios
corresponding to an AND operation in the single
fault space.

The training data used during the current studies was
obtained through simulation with the aim of covering
nine different process-operating points (10% to 90%
of controlled variables). Then, 45 learning patterns
(4 single faults x 9 operating points + 9 stationary
operational conditions) are involved during the
training procedure of the neural network in the lower
level of the hierarchical structure and 27 learning
patterns ((1 single faults + 2 double faults) x 9
operating points) are involved in training each neural
network in the medium level.



Fig. 3. Incipient F4v fault isolation (MD=MB=10%) – with noise (K=0,001).

Several studies have been conducted considering the
changes in the measurement variables free of noise. It
has been observed that under incipient and multiple
simultaneous faulty scenarios the performance of the
hierarchical structure of fuzzy neural networks
(HSFNN) is better than the similar approach using
multi-layer feedforward neural networks.
Furthermore, according to the results achieved so far,
the HSFNN provides better generalisation
capabilities to the fault isolation system. That is a
very important aspect as far as the performance of the
fault isolation system is concerned, since only single
abrupt fault symptoms are considered during the
training task.

However, the results presented in this paper are
achieved considering that the changes in the
measurement variables are affected by white noise,
with null mean, variance one and gain proportional to
a parameter K. Furthermore, the incipient faults have
been simulated considering that the component
degradation follows a linear law. In order to find the
minimum slope to the component degradation law
allowing that the fault isolation system is still able to
isolate the correct fault or faults, several studies have
been conducted. Since that depends on the
operational conditions of the process, several
experiments have been performed in order to achieve
the minimum slopes to the component degradation
law according to the minimum and maximum values
that the controlled variables can take, for the four
single faults considered.

Figure 3 shows a result comparison between the two
fault isolation approaches previously described,
considering the incipient fault scenario (F4v). The
fault has been simulated with the minimum possible
slope to the component degradation law as described
in the last paragraph. Furthermore, it has been
considered the process measurement variables
affected by noise. It can be observed from the figure

quoted, that the hierarchical structure consisting of
several fuzzy neural networks has a better
performance. It is shown in the Figure that the fault
isolation system based on that approach is less
sensitive to the noise in the measurement variables
values than the hierarchical structure using
conventional multi-layer feedforward neural
networks. Thus, the fault isolation system using
fuzzy neural networks can correctly isolate all the
faults simulated, for noise levels raised (K=0,001,
corresponding to ±1 mol or kmol/h in the process
measurement variables). However, the hierarchical
structure using multi-layer feedforward neural
networks only begin to provide results with some
sense for much lower noise levels, (K=0,00001,
corresponding to ±0,1 mol or kmol/h in the process
measurement variables).

Anyway, even under that faulty scenario, it has been
observed that the hierarchical structure of multi-layer
feedforward neural networks (HSMFNN) isolates the
fault F1v before isolate the correct fault F4v. Since the
same situation has occurred during simulation studies
conducted with the values of the measurement
variables noise free, this suggests that the wrong
diagnosis could be related with overlearning
problems or process dynamics having nothing to do
with the noise level. It has been observed that the
fuzzification layer works as a filter to the existing
noise and improves the generalisation capability of
the fault isolation approach proposed in this paper.

Table 1 presents the results achieved with the
HSMFNN, under double simultaneous abrupt faults.
These tables have a first column with the faults
simulated. A second column, where the classification
values (F4v=0,9922, for example) are presented,
corresponding to the results achieved with the lower
level (FNN0 network). Furthermore, they have also
four columns associated with the four fuzzy neural
networks at the medium level and finally, a column   
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Table 1 Results achieved with HSMFNN (MD=10%, MB=50%) – with noise (K=0,001)

Lower level Medium level Upper levelDouble
abrupt
faults NN0 NN1 NN2 NN3 NN4 OR operation Classification

F1vF3v F3v=0,9928 F4v - - F1vF3v F4v F1vF3vF4v 3 / 2

F1vF4v F3v F4v=1 - - F1vF3v F1vF4v F1vF3vF4v 3 / 2

F2vF3v F2v=0,9985 F3v F4v - F2vF3v F1vF3v F4v F1vF2vF3vF4v 4 / 2

F2vF4v F3v F4v=1 - - F1vF3v F2vF4v F1vF2vF3vF4v 4 / 2

with the final isolation results of the HFNN structure
(achieved after the OR operation).

Table 2 shows the corresponding results under the
same test conditions using the HSFNN. A very high
misclassification rate can be see in the results
presented in the first Table, while very accurate
results are presented in Table 2. Thus, the results
achieved demonstrate the robustness associated with
the HSFNN.

Table 3 shows the results achieved with the first
approach under single incipient fault scenarios, while
Table 4 presents the results of the neuro-fuzzy fault
isolation approach using the same test conditions. It
can be seen in Table 3 that there is a misclassification

in all results achieved, while Table 4 shows that
under the same test conditions the HSFNN gives the
correct diagnosis to all fault scenarios considered.

4. CONCLUSIONS

It has been demonstrated that the fault isolation task
based on a hierarchical structure of artificial neural
networks is able to isolate multiple simultaneous
faults from only single abrupt fault symptoms.

Two approaches have been considered. The first one
uses the conventional multi-layer feedforward neural
networks, while the second approach uses fuzzy

Table 2 Results achieved with HSFNN (MD=10%, MB=50%) – with noise (K=0,001)

Lower level Medium level Upper levelDouble
abrupt
faults FNN0 FNN1 FNN2 FNN3 FNN4 OR operation Classification

F1vF3v F1vF3v F1vF3v - F1vF3v - F1vF3v 2 / 2
F1vF4v F4v=0,9922 - - - F1vF4v F1vF4v 2 / 2
F2vF3v F2v F3v - F2vF3v F2vF3v - F2vF3v 2 / 2
F2vF4v F4v=0,9851 - - - F2vF4v F2vF4v 2 / 2

Table 3 Results achieved with HSMFNN (MD=MB=10%) – with noise (K=0,001)

Lower level Medium level Upper levelSingle
incipient

fault NN0 NN1 NN2 NN3 NN4 OR operation Classification

F1v F1v=0,5 F3v F4v F1v - F1vF3v F4v F1vF3vF4v 3 / 1
F2v F2v=0,5035 F3v F4v - F2vF3v F3v F4v F2vF3vF4v 3 / 1
F3v F3v=0,5012 F2v F4v - F2vF3v F3v F4v F2vF3vF4v 3 / 1
F4v F1v F3v F4v=0,5005 F1v - F3v F4v F1vF3vF4v 3 / 1

Table 4 Results achieved with HSFNN (MD=MB=10%) – with noise (K=0,001)

Lower level Medium level Upper levelSingle
incipient

fault FNN0 FNN1 FNN2 FNN3 FNN4 OR operation Classification

F1v F1v=0,5030 F1v - - - F1v 1 / 1
F2v F2v=0,5460 - F2v - - F2v 1 / 1
F3v F3v=0,5195 - - F3v - F3v 1 / 1
F4v F4v=0,7358 - - - F4v F4v 1 / 1



neural networks. The artificial neural networks used
in the second approach have been achieved by
adding a fuzzification layer to the conventional
feedforward neural networks.

The results achieved demonstrate the robustness of
the HSFNN even when the values of the
measurement variables are affected by white noise.
Under the same test conditions a quite bad
performance has been observed to the neuro fault
isolation approach considered. Thus, it has been
demonstrated that the fuzzification layer works as
filter avoiding a performance degradation of the
neuro-fuzzy fault isolation system when the noise is
considered. It is worth note that even under incipient
fault situations a good performance has been
observed to the neuro-fuzzy approach. Of course,
since a component degradation linear law has been
used to simulate the incipient faults, the fault
isolation system performance is affected by the
component degradation speed. Thus, it has also been
observed that for a component degradation speed
below a certain value the fault isolation approach is
not able to isolate the corresponding fault.

During the current studies, it has been observed that
the neural network’s generalisation ability has a
great importance in the diagnosis of incipient faults
since the training patterns only include symptoms of
abrupt faults. The successful results achieved with
the on-line fault isolation system using fuzzy neural
networks suggest that the approach proposed in this
paper could be a powerful methodology for practical
implementations.
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