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1. INTRODUCTION

Nonlinear model predictive control (NMPC) is a con-
trol strategy where application of nonlinear optimiza-
tion methods is essential. This paper is application
oriented, and contributes to the practical knowledge
of implementation ofNMPC. The paper focuses on
application ofSQP optimization algorithms inNMPC,
but emphasizes that appropriate model discretization
is essential for the performance. A rule of thumb is
that if it is impossible to integrate a model with a
certain method, the method cannot be used inNMPC.
The paper adresses the differences and similarities be-
tween feasible and infeasible path methods, sequential
and simultaneous methods and reduced and full space
methods. The suitable choices between these various
strategies are informally assessed by applying them to
a case; aCSTR with first order reaction.

The theory of optimization algorithms is not depen-
dent on how the equality constraints are formed.
For instance in optimal control, and in particular
in the special case ofNMPC, much concern is put
into discretization schemes for the nonlinear equality
constraints. These equality constraints result from a
continuous-time nonlinear dynamical system repeated
over a time horizon

�
. Three major variants are usu-

ally considered to handle unstable modes; orthogo-
nal collocation, multiple shooting and single shooting
(possibly with a variable grid). Ascheret al. (1995)
discuss the general benefits of these approaches, and
Barclay et al. (1998) discusses this in conjunction
with SQP algorithms. Vassiliadis (1993) addresses the
dynamic optimization of generalDAE systems. These
approaches seek to find formulations of the equality
constraints that are less hard to satisfy, while simulta-
neously reducing the discretization error.

Nonlinear inequality constraints may be introduced
for stability purposes inNMPC (Scokaertet al.(1999),
Chen and Allgöwer (1998b), Chen and Allgöwer

(1998a)). These references extends earlier work (Liet
al. (1990), de Oliveira and Biegler (1995)), which are
concerned with nominal stability. Hence, termination
prior to convergence of the optimizer cannot guarantee
stability unless the equality constraints are satisfied.

The immediate answer to the need for early termina-
tion is single shooting, i.e., solve the model at each
iteration with an initial value solver. Single shooting
algorithms progress towards a solution by iterating
between solving the model and solving a reduced
size optimization problem. Due to this, single shoot-
ing is said to be a sequential method. Single shoot-
ing produces a reduced gradient problem in the free
variables to be solved at eachNMPC iteration. Main-
taining feasibility of nonlinear inequalities involving
dependent variables can then be obtained by use of
FSQP’ (Lawrence and Tits 2000). Single shooting
may be costly if evaluation of the problem functions is
costly, e.g. if an implicit discretization scheme must be
applied. In addition single shooting lacks robustness
when applied to unstable systems (Ascheret al.1995),
section 4.1 and 4.6.2.

To solve optimization problems with stabilizing end-
point constraints simultaneous methods must be ap-
plied. End-point constraints make the problem a two-
point boundary value problem (TPBVP) which in gen-
eral cannot be resolved with single shooting. Simul-
taneous methods do not solve the model at each it-
eration. Instead a simultaneous search for a model
solution and optimal point is carried out. Multiple-
shooting and orthogonal collocation, possibly on finite
elements (Finlayson 1980), are the most widely used
simultaneous methods. Since simultaneous methods
do not solve the model at each iteration, they cannot
guarantee stability in the nominal stability setting of
dual-mode or quasi-infinite horizonNMPC if termi-
nated prior to convergence. Note that the results re-
ported in (Bocket al. 2000) show that termination
prior to convergence in multiple shooting may be
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viable for someapplications.Decompositionstrate-
giesfor orthogonalcollocationonfinite elementshave
beenconsideredby (CervantesandBiegler 2000)and
(Biegler etal. 2001).

For convenience,definethesuperscriptnotation ������ � �
	 ����
 for an entity � indexedby � . Thenonlinear
MPC problemwith ��������� ��� ����� and �������! �"� ����#�$��% #"& ��' � ()+*-,/.10 (�325476  �38 ( 6 )9;: ,�<�3254=6 � � 6 )>1?

s.t. @BA & � �C@DA5�! ��E � � � ��F G�$HJILKNMOMBMPKJI�5�QHJRLKNMOMBMPKJR
(1)

with SUT � is consideredin this paper. Theequality
constraintsin (1) areformedby assuminganappropri-
atediscretizationschemeof thecontinoustimemodel
constraintV1�! E �XWZY � �[F repeatedover thehorizon

�
along with a suitableparametrizationof the control
profile. Endpointconstraintsor augmentationof the
objectivemaybeincludedtoguaranteenominalstabil-
ity of theMPC algorithm,see(Mayneetal. 2000).Ob-
serve that referencetrackingandnon-zeroset-points
can be handledin this framework with minor mod-
ifications. It is assumedthat sufficiently smooth1st
principles state-spacemodelswith measuredstates,
analytic1storderderivativesareusedandthat�]\ E]^ � �_��I`KaMBMOMbKJI E R`KNMOMBMbKcI �
canbedescribedby bounds.

The papercontinueswith a conceptualcomparison
betweensingleshootingandreducedHessianmethods
in section2. Simulationresultsfollow in section3.
Discussionand conclusionsto the paper follow in
sections4 and5.

2. OPTIMIZATION METHODS

FirstSQPmethodsin generalareconsidered.TheMPC
problem (1) can be restatedas a generalnonlinear
programming(NLP) problem:�+��%d# V1�� �

s.t. @ A �� � ��F@feg�� �=h F (2)

where VjiGkml , @ A idk;lon and @ e iPk;lqp where�r�s� # � : ����S , tu�v��#b� � :xw � and yx�{z��
(assumingupperand lower boundson �! � E � � � over
the horizons

�
and S ). The Jacobianmatrix of the

equality constraintsis denoted |~}� ��|��� �"� }��� � @ (A �� �
� E � @ )A �� �"� E MOMBM E � @DnA �! �
��� where @D�A �� �"� is
the � -th componentof the vector @��! � � . The matrix� �� �"� madeup of |~}� andthegradientsof theactive
inequalityconstraintsis assumedto have full column
rank. The null-spaceof

� �� � � } definesthe tangent
spaceto theequalityandactive inequalityconstraints
at  � . Denote ��� � the Hessianof the Lagrangian
function ���! � Ef�PA & � E���e & �-� ��V1�� �"� : � }A & � @ A �� �"� :� }e & � @feX�! � � where � A & � and � e & � are the multiplier
vectors. We assumestrong secondorder sufficient
conditions,i.e. that  � is an isolatedminimumof the
NLP (2) andthat � �A and � �e areunique.

In SQP, a sequenceof subproblemsaresolved,where
the model is linearizedanda quadraticmodelof the
Hessianof the Lagrangianis formed. This gives a
quadraticprogrammingproblemto be solvedat each
iterationof theSQP algorithm:�+��%d�3� � V1�! � � }�� � : () ��}��� � � �s.t.

� @ A �! �
� }�� � : @ A �� �
� ��F� @ e �! �
� } � � : @ e �� �"��h F (3)

where � �a� F usually is an approximationto ��� � .
Thesolution � � to (3) is a searchdirection.TheSQP
algorithm searchesalong � � for a new iterate  �38 (
that givesa reductionin a merit function. The merit
function �G� is neededto give convergenceto a point
satisfyingthestrong2ndorderassumptionsfrom any
startingpointundercertainadditionalassumptions.

2.1 Reducedgradientmethods

Theqp (3) canbe resolved in the full spaceof free
and independentvariables,or in the reducedspace
of free variablesby a suitableelimination of vari-
ables.Eliminationof variablesexploits that if ��# �L�� � S ����� � S and that � � S is small, the re-
ducedsubproblemfor thenull-spacestepwill besmall
(but dense).In the full spacethe sparsityof both the
Hessian(whichcommonlyrequiresanalyticHessians)
and the Jacobiancan be exploited to yield fast so-
lutions (Rao et al. 1998). This sectionshows that a
reducedgradientapproachcanbe derivedby follow-
ing two differentstrategies.The first usesa sequen-
tial approach,seee.g.(deOliveiraandBiegler 1995),
while thesecondfollows thesimultaneousnull-space
approach(Nocedal and Wright 1999), (Biegler et
al. 1995).

2.1.1. Sequentialapproach(sSQP) By iteratingthe
model over the horizon

�
, the transformation d���� �� 4 E � � � allows the equivalent form which is es-

sentially a projectiononto the subspacê . The se-
quentialapproachsolvesthe modelat eachiteration,
i.e. theqp-subproblemis solved following a feasible
pathstrategy. Thealgorithmevolvesthemodelto get d�J� � �! 4 E �5� � . Thenthealgorithmsolvesthea qp
for adirection � � � , giving �G�D8 ( by a line search,which
againis usedto evolve themodelgiving  d�38 ( andso
on.

In sSQP thesecondorderderivativesof themodelare
neglected.This sacrificesthe quadraticconvergence
of Newtons method,but it gives a positive definite
Hessian.This is also known as the Gauss-Newton
method,whichwill deteriorateto linearconvergenceif
theprojectedcontributionsof themodelaresignificant
(Biegler2000).SincetheHessian��� � is positivedef-
inite, linear convergenceresults.Otherwise,nearthe
solutionquadraticconvergenceof sSQP mayoccur, if
no statevariableboundsareactiveat thesolution.

2.1.2. ReducedHessianapproach (rSQP) In the
null-spacemethoda decompositionis appliedto the
KKT conditionsto eliminatevariables.It canbeshown



that thesSQP approachcoincidewith therSQP ap-
proachfor thechoice� � ���
���
�G� � )#�# V � E � )��� V �"� and
by decomposing| � into rangeandnull spaceaccord-
ing to thenaturalpartiotioninggivenby thestatesand
controls.

In comparingthe two approachesobserve that the
sequentialapproachmaintainsfeasibility of all iter-
ates,while rSQP searchesfor feasibilityandoptimal-
ity simultaneously. In additionthe sequentialmethod
solvesthemodelat eachiteration,while rSQP solves
the modelonly at the solution  � . Also notethat the
sequentialapproachonly handlesinitial value prob-
lems (IVP), i.e.  . H¡ =# cannot be guaranteed
since it implementsa shootingstrategy in evolving
the modelover the horizon.The endpointconstraint
changesthe probleminto a boundaryvalueproblem
(BVP) which mustbehandledby simultaneousstrate-
gies.Thereforethe sequentialapproachis limited to
open-loopstableand non-stiff systems.In fact, the
stability of the algorithm requiresan infinite predic-
tion horizonwhich is intractableunlessthesteplength
canbeincreasedto infinity, see(deOliveira1994)and
(ChenandAllg öwer1998a) for details.

Therearea numberof commercialroutinesavailable
for bothdenseandsparsealgebrathatcanbeapplied.
Decompositionstrategiesfor sparsematricesare im-
plementedin the Harwell subroutinelibrariesMA28
andMA48 (Harwell Laboratory1995).Alternativesto
computingtheJacobianby analyticpartialderivatives
is by perturbationor by forwarddifferences.This will
have a significant impact on the computationalde-
mands,seetheresultsin section3.2.

3. SIMULATIONS

NMPC was implementedon a simplecasewith three
different optimization methods.The first is a basic
full spaceSQP method.The secondis the reduced
HessianmethodrSQP, andthethird is thesequential
methodsSQP. The caseis a CSTR with first order
reaction.TheCSTR examplewasthoroughlyexplored
by applicationof variousdiscretizationmethodsand
finite differenceapproximationsto theJacobian.

3.1 Implementationissues

The basic SQP full-space method and rSQP were
implementedwith the common ¢ ( -penalty function.
sSQP implementedan ¢ ( -penaltyfunctionwithoutpe-
nalizationof equalityconstraints,sincesSQP always
remain feasiblewith respectto equalities.The line
searchfor all methodsis backtrackingline search.

The relaxed convergencecriteria from (Gill et al.
1981),section8.2.3,wereimplementedwith tolerancew F 0d£ for the basicSQP methodandsSQP. In rSQP
the algorithmstopswhenever a certainKKT measure
is decreasedbelow thetolerance

w F 0G£ . Theimplemen-
tationof rSQP is generallymorecarefullyperformed
thanthebasicSQP andsSQP methods.Hence,there-
laxedterminationcriteriausedin basicSQP andsSQP

partlycompensatesfor arudimentaryimplementation.
However, asthediscussionin section2 indicates,the
sSQP methodmayshow linearconvergencein certain
circumstances,and relaxed termination criteria can
thereforebeof crucialimportancein productioncodes
aswell.

For the CSTR casethe model was discretizedwith
explicit andimplicit Euler, LobattoIIIC andordinary
Runge-Kutta 4. The Jacobianmatriceswith associ-
ated almost block-diagonal(ABD) structurefor the
selecteddiscretizationmethods.TheCSTR casewas
implementedwith both analytic Jacobianand finite
differenceapproximationsof theJacobian.Finite dif-
ferenceswere consideredfor both the full Jacobian
(a densematrix) and the elementsalong the block
diagonal(asparsematrix).In sSQP analyticandfinite
differenceJacobianswereimplemented.I.e. the sen-
sitivity matrix ¤ wasapproximateddirectly by finite
differenceperturbationsof the simulator. The CSTR
casewas investigatedwith different samplingrates
andpredictionandmovehorizons.

The sSQP method was implementedas a Gauss-
Newton methodwith analytic2nd derivativesof the
objective, while rSQP was implementedwith BFGS
updates.

3.2 Case:CSTR

The caseis the following isothermalCSTR with 1st
order reactionfrom (Matsuuraand Kato 1967) also
investigatedby (deOliveira1994)� #-¥�f¦ �/� ( : � ) � � (O§  (� #�¨�f¦ �©�]ª¬«�¥ �  ) � � ¥#�¥ : �­ª�« ¨ �  ) � ��¨#�¥ � � ¨®#O¨¯ ( 8 # ¨Z° ¨

(4)
with parametervalues� ( �LFb±²z , � ) � w , ª�«�¥��Lz-³�± ´
and ª�« ¨ �¡F�± w . For �!� ( E � ) � �u� w E w � the CSTR
has three equilibrium points at  ( � w F
F E  ) H�!Fb± µ"¶
¶ E z�±¸·�z E ·�± F�· � , with themiddleequilibriumpoint
being unstable,and the others stable. The system
(4) was discretizedwith a time step ¹ , prediction
horizon

�
, movehorizon S andsimulatedfor º <$.�»

samples,i.e. the NMPC problemis repeatedlysolvedº <$.�» times.At timestep10theprocessexperiences
a +50% step in ª�«�¥ which is seenby the NMPC
algorithmthroughthefeedbackonly. Theweightsare¼ � w F
½ k"¾ and ¿L�C½ k�À in equation(1) anddeviation
from stationaryvaluesis penalized.Herethe control
objective is to keep the statesand controls at their
initial values c�_� w F"F E F�± µ
¶"¶ � and �c�_� w E w � .
The physicalbounds �! � E � �­��Á F are imposedover
the horizons. The SQP-algorithms were initialized
with theoutputfrom thepreviouscall for eachNMPC
iteration.Notethatintegralactionis not implemented.
This is justified by that only a comparisonof the
optimization methodsis investigated,and it is ex-
pectedthat introducing integral action will not in-
fluencethis comparison.A representative simulation
resultis shown in Figure1.Theprocesswassimulated
by MATLAB’sode45 in all cases.
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Fig. 1. NMPC of CSTR. The figure shows typical
resultsfor NMPC of the CSTR casewith ¹Â�w
. The variousdiscretizationmethodsproduced

nearly identical results.In the lower subfigure
the solid curve is for � ( and the dashedcurve
is for � ) . The step in ª « ¥ entersat time step
10, and this drives the state  ) away from the
equilibrium. If the control inputsarekept at the
equilibrium input

� w E w � , the systemwill settleat
anequilibriumpoint at  J�[� w F"F E w�Ã ± ´"³ � .

Note that with the given initial conditionsand the
given disturbance,this caseis pathologicalwith re-
spect to inequality constraints,i.e. the active set is
emptyandunalteredthroughoutthehorizon

�
.

Thecomputationswereimplementedin MATLABwith
the qp-routines available as mex/dll-files on a
CompaqDeskproEN / PentiumII / 450MHz/ 128Mb
RAM running Windows NT4.0. Computationalre-
sultsareshown in Tables1-3. ¹dÄ � ÄDS are the sam-
pling time,predictionandmovehorizons.The# vars.
tot/dep/freearethe total, dependentandfree number
of variables.Note that thereareno active inequality
constraintsin thiscase.TheJacobianis eitheranalytic
or approximatedby finite differences:In mode fd1
only elementsalongtheblock diagonalwereapprox-
imated,while in modefd2 the full (dense)Jacobian
was approximated.Obj is the objective value mea-
suredbysummingthedeviationsof actualprosessout-
putsandimplementedcontrol actionsover theNMPC
horizon º <Q.�» . CPU time is the time measuredby
MATLAB’s cputime commandfrom start to endof
themainNMPC loop.Theresultsfor sSQPwith ode45
with ¹��Åz showedsomeripple thatwerecausedby
the relaxed terminationcriteria.The resultsin Tables
1-3aresummarizedin thefollowing conclusions:Æ sSQP is sensitive to thechoicebetweenimplicit

andexplicit integrationmethods,while bothba-
sicSQP andrSQP is insensitive to this.Æ Finitedifferenceapproximationsof thefull Jaco-
bianin basicSQP andrSQP shouldbeavoided.Æ Reducedgradient methodsare superior for a
large numberof variableswith few degreesof
freedom.

Note that a consequenceof the first item is that si-
multaneousSQP methodscan have fewer variables
whenimplementedwith implicit discretizationmeth-
ods.Herethe steplength ¹ canbe increasedbeyond

thestability limit of explicit methods(but not beyond
reasonableaccuracy). SincethebasicSQP andsSQP
methodsareapproximatelysimilar in implementation
complexity,sSQP shouldbechosenwhenexplicit dis-
cretizationschemessuffice. In the faceof morechal-
lengingprocessesreducedHessianmethodsaresupe-
rior provided that the assumptionthat thereare few
degreesof freedomcontinueto hold.This assumption
commonlyholdsin NMPC.

4. DISCUSSION

In this paper different MPC strategies were imple-
mentedon a caseand the computationalload and
quality of the resultswere investigated.From tables
1-3 it is observed that among the different NMPC
methods,the rSQP method are preferablein view
of computationaltime if implicit discretizationmeth-
odsarerequired.In NMPC computationaltime is lim-
ited, and feasibility of intermediateiteratesis essen-
tial for stability (Mayne et al. 2000), (Scokaertet
al. 1999).Generally, SQP involvesan adaptive sub-
problem,i.e. its computationaltime is not determin-
istic. Consequently, in NMPC feasiblepathSQP meth-
ods are preferredsincethey allow terminationprior
to convergence(Mayne 1997). Such methodsmust
solve the model constraintsat eachSQP iteration,
which may be time consumingif the model is repre-
sentedwith an implicit discretizationscheme.Hence,
sSQP becomescomputationallydemandingif implicit
discretizationmethodsareapplied,whereassimulta-
neousSQP methodsperformequallywell regardless
of whetherimplicit or explicit discretizationscheme
are applied.Both methodsrequire that the selected
discretizationschemeis appropriate,i.e. if themodel
cannotbe simulatedwith a given method,it cannot
beexpectedthat theoptimizationalgorithmsperform
well either.

Feasibility with respectto inequality constraintsis
easierto achieve. FSQP’ (Lawrenceand Tits 2000)
andrFSQP (MartinsenandFoss2001)maintainfea-
sibility with respect to inequality constraints,and
asymptoticfeasibility with respectto nonlinearequal-
ity constraintsby combining these with an exact
penaltyfunctionandanarc search.The feasiblepath
sSQP methodis expectednot to performwell in the
presenceof strongnonlinearities(Ascheret al. 1995).
This is contradictoryto theneedsfor NMPC; e.g.prob-
lemswith strongnonlinearitiesandtrajectorytracking
(Qin andBadgwell2000).

5. CONCLUSION

The practical considerationsdiscussedin this paper
explorethechoicesanengineermusttake if hewants
to implementNMPC at a givenprocess.The interplay
betweendiscretizationmethodsandoptimizational-
gorithmshasbeeninvestigatedthrougha casestudy.

First the engineermust select an appropriatedis-
cretization scheme.If he choosesan explicit dis-



Table1. Nonlinear MPC on a CSTR: Basic SQP method.

Discretization Horizons # vars. Jacobian Results
method Ç"È�É�ÈËÊ tot/dep/free analytic/fd1/fd2 Obj CPUtime

Explicit Euler 2/6/5 22/12/10 analytic 33.55 5.9s
Explicit Euler 1/12/10 44/24/20 analytic 28.33 19s
Implicit Euler 2/6/5 22/12/10 analytic 31.41 9.5s
Implicit Euler 1/12/10 44/24/20 analytic 27.85 45s
LobattoIIIC 2/6/5 34/24/10 analytic 32.37 7.3s
LobattoIIIC 2/6/5 34/24/10 fd1 32.35 22s
LobattoIIIC 2/6/5 34/24/10 fd2 32.35 25s
LobattoIIIC 1/12/10 68/48/20 analytic 28.07 35s
LobattoIIIC 1/12/10 68/48/20 fd1 28.06 96s
LobattoIIIC 1/12/10 68/48/20 fd2 28.06 222s
RK4 2/6/5 70/60/10 analytic 32.40 14.1s
RK4 2/6/5 70/60/10 fd1 32.39 30s
RK4 2/6/5 70/60/10 fd2 32.40 117s
RK4 1/12/10 140/120/20 analytic 28.05 119s
RK4 1/12/10 140/120/20 fd1 28.04 338s
RK4 1/12/10 140/120/20 fd2 28.05 1136s

Table2. Nonlinear MPC on a CSTR: sSQP method.

Discretization Horizons # vars. Jacobian Results
method Ç"È�É�ÈËÊ tot/dep/free analytic/fd Obj CPUtime

Explicit Euler 2/6/5 22/12/10 analytic 33.18 4.4s
Explicit Euler 2/6/5 22/12/10 fd 33.54 5.7s
Explicit Euler 1/12/10 44/24/20 analytic 28.15 13.1s
Explicit Euler 1/12/10 44/24/20 fd 28.33 19.4s
Implicit Euler 2/6/5 22/12/10 analytic 31.41 33s
Implicit Euler 2/6/5 22/12/10 fd 31.41 131s
Implicit Euler 1/12/10 44/24/20 analytic 27.85 94s
Implicit Euler 1/12/10 44/24/20 fd 27.83 745s
LobattoIIIC 2/6/5 34/24/10 analytic 32.37 49s
LobattoIIIC 2/6/5 34/24/10 fd 32.36 192s
LobattoIIIC 1/12/10 68/48/20 analytic 28.07 118s
LobattoIIIC 1/12/10 68/48/20 fd 28.07 1121s
RK4 2/6/5 70/60/10 analytic 32.40 4.3s
RK4 2/6/5 70/60/10 fd 32.40 10.0s
RK4 1/12/10 140/120/20 analytic 28.05 12.2s
RK4 1/12/10 140/120/20 fd 28.05 58s
ode45 2/6/5 22/12/10 fd 23.03 36s
ode45 1/12/10 44/24/20 fd 28.49 149s

Table3. Nonlinear MPC on a CSTR: rSQP method.

Discretization Horizons # vars. Jacobian Results
method Ç"È�É�ÈËÊ tot/dep/free analytic/fd1/fd2 Obj CPUtime

Explicit Euler 2/6/5 22/12/10 analytic 33.57 6.1s
Explicit Euler 1/12/10 44/24/10 analytic 28.27 13.4s
Implicit Euler 2/6/5 22/12/10 analytic 31.43 6.2s
Implicit Euler 1/12/10 44/24/10 analytic 27.99 12.8s
LobattoIIIC 2/6/5 34/24/10 analytic 32.37 7.1s
LobattoIIIC 2/6/5 34/24/10 fd1 32.35 11.5s
LobattoIIIC 2/6/5 34/24/10 fd2 32.35 17.3s
LobattoIIIC 1/12/10 68/48/20 analytic 28.07 17.2s
LobattoIIIC 1/12/10 68/48/20 fd1 28.05 39s
LobattoIIIC 1/12/10 68/48/20 fd2 28.06 95s
RK4 2/6/5 70/60/10 analytic 32.40 9.1s
RK4 2/6/5 70/60/10 fd1 32.39 19s
RK4 2/6/5 70/60/10 fd2 32.40 71s
RK4 1/12/10 140/120/20 analytic 28.05 23s
RK4 1/12/10 140/120/20 fd1 28.04 58s
RK4 1/12/10 140/120/20 fd2 28.05 781s

cretizationscheme,he can choosebetweensequen-
tial or simultaneousoptimizationmethods.Sequential
methodsare easyto implement,while simultaneous
methodsareharderto implement.This appliesin par-
ticular to reducedHessianmethodswhich may be
quitesophisticated.If implicit discretizationmethods

must be applied,the performanceof sSQP deterio-
rateswhile simultaneousSQP doesnot degrade.
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Rao, C. V., S. J. Wright and J. B. Rawlings
(1998).Application of interior-point methodsto
modelpredictive control.J. Optim.TheoryAppl.
99(3), 723–757.

Scokaert,PierreO. M., David Q.MayneandJamesB.
Rawlings (1999). Suboptimalmodel predictive
control(feasibilityimpliesstability).IEEETrans.
Auto.Cont44(3), 648–654.

Vassiliadis, V. (1993). Computational solution of
dynamic optimization problems with general
differential-algebraicconstraints. PhD thesis.
Universityof London.U.K.


