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1. INTRODUCTION (1998)). These references extends earlier workeLi

al. (1990), de Oliveira and Biegler (1995)), which are
concerned with nominal stability. Hence, termination
prior to convergence of the optimizer cannot guarantee
stability unless the equality constraints are satisfied.

Nonlinear model predictive controN{/PC) is a con-
trol strategy where application of nonlinear optimiza-
tion methods is essential. This paper is application
oriented, and contributes to the practical knowledge The immediate answer to the need for early termina-
of implementation ofNMPC. The paper focuses on tion is single shooting, i.e., solve the model at each
application ofSQP optimization algorithms iltNMPC, iteration with an initial value solver. Single shooting
but emphasizes that appropriate model discretizationalgorithms progress towards a solution by iterating
is essential for the performance. A rule of thumb is between solving the model and solving a reduced
that if it is impossible to integrate a model with a Size optimization problem. Due to this, single shoot-
certain method, the method cannot be useNN®C. ing is said to be a sequential method. Single shoot-
The paper adresses the differences and similarities being produces a reduced gradient problem in the free
tween feasible and infeasible path methods, sequentiavariables to be solved at ea8iVPC iteration. Main-

and simultaneous methods and reduced and full spacéaining feasibility of nonlinear inequalities involving
methods. The suitable choices between these variouglependent variables can then be obtained by use of
strategies are informally assessed by applying them toFSQP" (Lawrence and Tits 2000). Single shooting
a case; &£STRwith first order reaction. may be costly if evaluation of the problem functions is
o . . costly, e.g. if an implicit discretization scheme must be
The theory of optimization algorithms is not depen- o qjiaq 1y addition single shooting lacks robustness

dent on how the equality constraints are formed. \ypan applied to unstable systems (Asobieal. 1995),
For instance in optimal control, and in particular goction 4.1 and 4.6.2.

in the special case dMPC, much concern is put

into discretization schemes for the nonlinear equality To solve optimization problems with stabilizing end-
constraints. These equality constraints result from apoint constraints simultaneous methods must be ap-
continuous-time nonlinear dynamical system repeatedplied. End-point constraints make the problem a two-
over a time horizonP. Three major variants are usu- point boundary value problenTPBVP) which in gen-

ally considered to handle unstable modes; orthogo-eral cannot be resolved with single shooting. Simul-
nal collocation, multiple shooting and single shooting taneous methods do not solve the model at each it-
(possibly with a variable grid). Ascheat al. (1995) eration. Instead a simultaneous search for a model
discuss the general benefits of these approaches, angolution and optimal point is carried out. Multiple-
Barclay et al. (1998) discusses this in conjunction shooting and orthogonal collocation, possibly on finite
with SQP algorithms. Vassiliadis (1993) addresses the elements (Finlayson 1980), are the most widely used
dynamic optimization of gener&AE systems. These sSimultaneous methods. Since simultaneous methods
approaches seek to find formulations of the equality do not solve the model at each iteration, they cannot
constraints that are less hard to satisfy, while simulta- guarantee stability in the nominal stability setting of
neously reducing the discretization error. dual-mode or quasi-infinite horizoNMPC if termi-
nated prior to convergence. Note that the results re-
ported in (Bocket al. 2000) show that termination
prior to convergence in multiple shooting may be

Nonlinear inequality constraints may be introduced
for stability purposes ilNVPC (Scokaeret al. (1999),
Chen and Allgower (19989, Chen and Allgower



viable for some applications.Decompositionstrate-
giesfor orthogonatollocationonfinite elementhave
beenconsideredy (CenantesandBiegler 2000)and
(Biegleretal. 2001).

For conveniencedefinethe superscriphotationz* =
{2k} cn for anentity z indexed by k. The nonlinear
MPC problemwith dim(uy) = n,, anddim(zy) = n,
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st. cer = ce(z®,uf) =0
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with M < P is consideredn this paper The equality
constraintsn (1) areformedby assuming@nappropri-
atediscretizatiorschemeof the continoustime model
constraintf (z,u;t) = 0 repeatedver the horizon P
along with a suitable parametrizatiorof the control
profile. Endpointconstraintsor augmentatiorof the
objectvemaybeincludedto guarante@ominalstabil-
ity of theMPC algorithm,see(Mayneetal. 2000).0Ob-
sene that referencetracking and non-zeroset-points
can be handledin this framewvork with minor mod-
ifications. It is assumedhat sufficiently smooth1st
principles state-spacenodelswith measuredstates,
analyticlstorderderivativesareusedandthat

(X, U) =X x---xX,Ux---xX)
canbedescribedy bounds.
The papercontinueswith a conceptualcomparison
betweersingleshootingandreduceHessiarmethods
in section2. Simulationresultsfollow in section3.

Discussionand conclusionsto the paperfollow in
sections4 and5.

2. OPTIMIZATION METHODS
First SQP methodsn generabreconsideredThe MPC

problem (1) can be restatedas a generalnonlinear
programmingNLP) problem:

min,  f(z)
st. cg(z) =0 2)
cz(z) <0

wheref : ™ — ,ce : ™ — ™andcgz : ™ — P where
n =n,P+n,M, m = ny(P+1)andp = 2n

(assumingupperand lower boundson (zy,uy) over
the horizons P and M). The Jacobiarmatrix of the
equality constraintsis denotedA] = A(z;)T =

(Ve (), Ve (zg), - -, Ve (zy)] whereck (zy) is

the ¢-th componentof the vector ¢(zy). The matrix
G(z1,) madeup of AT andthe gradientsof the active

inequality constraintds assumedo have full column
rank. The null-spaceof G(z;)” definesthe tangent
spaceto the equalityandactive inequalityconstraints
at z;. Denote HL;, the Hessianof the Lagrangian
function £(zx, Ae ks Azk) = f(2k) + AE pce(mr) +

/\;kcz(mk) where \g ;, and Az, are the multiplier

vectors. We assumestrong secondorder sufficient
conditions,i.e. thatx* is anisolatedminimum of the
NLP (2) andthat A} andA7 areunique.

In SQP, asequencef subproblemsresolved,where
the modelis linearizedand a quadraticmodel of the
Hessianof the Lagrangianis formed. This gives a
guadraticprogrammingproblemto be solved at each
iterationof the SQP algorithm:

l’l’lind,e Vf(.’Ek)Tdk + %d{Bkdk
st. Vee(x)Tdy + ce(xg) =0 (3)
VCI(.'L‘k)Tdk + CI(IL'k) <0

where B, = 0 usuallyis anapproximationto H Ly,.
The solutiondy, to (3) is a searchdirection.The SQP
algorithm searcheslong d,, for a new iterate x1
that givesa reductionin a merit function. The merit
function ¢,, is neededo give corvergenceto a point
satisfyingthe strong2nd orderassumptiongrom ary
startingpoint undercertainadditionalassumptions.

2.1 Reducedyradientmethods

The gp ( 3) canberesohedin the full spaceof free
and independentvariables,or in the reducedspace
of free variablesby a suitable elimination of vari-
ables Elimination of variablesexploits thatif n, P —
n M >> n,M andthat n,M is small, the re-
ducedsubproblenfor thenull-spacestepwill besmall
(but dense).In the full spacethe sparsityof boththe
Hessian(which commonlyrequiresanalyticHessians)
and the Jacobiancan be exploited to yield fast so-
lutions (Rao et al. 1998). This sectionshaws that a
reducedgradientapproachcanbe derived by follow-
ing two different stratgyies. The first usesa sequen-
tial approachseee.g.(de OliveiraandBiegler 1995),
while the secondfollows the simultaneousull-space
approach(Nocedal and Wright 1999), (Biegler et
al. 1995).

2.1.1. Sequentiahpproad (sSQP) By iteratingthe
model over the horizon P, the transformationz* =

U (20,u*) allows the equivalent form which is es-
sentially a projection onto the subspacé/. The se-
guentialapproactsolvesthe model at eachiteration,
i.e. the gp-subproblenis solved following a feasible
pathstrat@y. The algorithmevolvesthe modelto get
z* = W(xq,u*). Thenthe algorithmsolvesthe a qp

for adirectiond?, giving u**! by aline searchwhich
againis usedto evolve the modelgiving z*¥+! andso
on.

In s SQP thesecondrderderivativesof themodelare
neglected. This sacrificesthe quadraticcornvergence
of Newtons method,but it gives a positive definite
Hessian.This is also known as the Gauss-Naton
methodwhichwill deteriorateo linearcornvergencef
theprojectedcontributionsof themodelaresignificant
(Biegler2000).SincetheHessianH £* is positive def-
inite, linear corvergenceresults.Otherwise,nearthe
solutionquadraticcorvergenceof s SQP mayoccur; if
no statevariableboundsareactive atthe solution.

2.1.2. ReducedHessianappmadc (r SQP) In the
null-spacemethoda decompositionis appliedto the
KKT conditionsto eliminatevariableslt canbeshown



thatthe s SQP approachcoincidewith the r SQP ap-
proachfor thechoiceBy, = diag(VZ, fx, V2, fr) and
by decomposingi;, into rangeandnull spaceaccord-
ing to the naturalpartiotioninggivenby the statesand
controls.

In comparingthe two approachesbsere that the
sequentialapproachmaintainsfeasibility of all iter-
ateswhile r SQP searches$or feasibility andoptimal-
ity simultaneouslyln additionthe sequentiamethod
solvesthe modelat eachiteration,while r SQP solves
the modelonly at the solutionz*. Also notethatthe
sequentialapproachonly handlesinitial value prob-
lems (I VP), i.e. zp € €, cannotbe guaranteed
sinceit implementsa shootingstrateyy in evolving
the model over the horizon. The endpointconstraint
changeghe probleminto a boundaryvalue problem
(BVP) which mustbe handledby simultaneoustrate-
gies. Thereforethe sequentialpproachis limited to
open-loopstable and non-stif systems.In fact, the
stability of the algorithm requiresan infinite predic-
tion horizonwhichis intractableunlesshesteplength
canbeincreasedo infinity, see(de Oliveiral994)and
(ChenandAllg dwer 199&) for details.

Therearea numberof commercialroutinesavailable
for both denseandsparsealgebrathatcanbe applied.
Decompositiorstratgyiesfor sparsematricesareim-
plementedn the Harwell subroutinelibraries MA28
andMA48 (Harwell Laboratory1995).Alternativesto
computingthe Jacobiarby analyticpartialderivatives
is by perturbatioror by forwarddifferencesThis will

have a significantimpact on the computationalde-
mands seetheresultsin section3.2.

3. SIMULATIONS

NMPC was implementedon a simple casewith three
different optimization methods.The first is a basic
full spaceSQP method. The secondis the reduced
Hessiammethodr SQP, andthethird is the sequential
methods SQP. The caseis a CSTR with first order
reaction.The CSTR examplewasthoroughlyexplored
by applicationof variousdiscretizationmethodsand
finite differenceapproximationgo the Jacobian.

3.1 Implementationissues

The basic SQP full-space methodand r SQP were
implementedwith the common!;-penalty function.
s SQP implementedin!; -penaltyfunctionwithout pe-
nalizationof equalityconstraintssinces SQP always
remain feasiblewith respectto equalities.The line
searcHor all methodss backtrackindine search.

The relaxed corvergencecriteria from (Gill et al.
1981),section8.2.3,wereimplementedvith tolerance
102 for the basicSQP methodandsSQP. In r SQP
the algorithm stopswhenever a certainKKT measure
is decreasetielow thetolerancel 0—5. Theimplemen-
tationof r SQP is generallymorecarefully performed
thanthebasicSQP ands SQP methodsHence there-
laxedterminationcriteriausedn basicSQP ands SQP

partly compensatefor arudimentaryimplementation.
However, asthe discussiorin section2 indicates the

s SQP methodmayshaw linearcorvergencean certain
circumstancesand relaxed termination criteria can

thereforebe of crucialimportancen productioncodes
aswell.

For the CSTR casethe model was discretizedwith

explicit andimplicit Euler, LobattollIC andordinary
Runge-Kutta 4. The Jacobianmatriceswith associ-
ated almost block-diagonal(ABD) structurefor the
selecteddiscretizationmethods.The CSTR casewas
implementedwith both analytic Jacobianand finite

differenceapproximation®f the JacobianFinite dif-

ferenceswere consideredfor both the full Jacobian
(a densematrix) and the elementsalong the block

diagonal(asparsematrix).In s SQP analyticandfinite

differenceJacobianavereimplementedl.e. the sen-
sitivity matrix S was approximatedirectly by finite

differenceperturbationsof the simulator The CSTR

casewas investigatedwith different samplingrates
andpredictionandmove horizons.

The sSQP method was implementedas a Gauss-
Newton methodwith analytic 2nd derivatives of the
objective, while r SQP wasimplementedwith BFGS
updates.

3.2 Case:.CSTR

The caseis the following isothermalCSTR with 1st
order reactionfrom (Matsuuraand Kato 1967) also
investigatedy (de Oliveiral994)

d
Ltl =u; +us — k1\/$1

Gt = (Opy = 22) 35 + (Cp, — 02) 3 — ity

with parametewraluesk; = 0.2, k; = 1,Cp, = 24.9
andCp, = 0.1. For (uz,u2) = (1,1) the CSTR
has three equilibrium pointsat z; = 100, z; €
(0.633,2.72,7.07), with themiddle equilibriumpoint
being unstable,and the others stable. The system
(4) was discretizedwith a time step h, prediction
horizonP, move horizonM andsimulatedor Nyspc
samplesj.e. the NMPC problemis repeatedlysolved
Nyrpc times.At time stepl0the processxperiences
a +50% step in Cg, which is seenby the NMPC
algorithmthroughthe feedbaclonly. Theweightsare
Q@ = 10I,, andR = I,,, in equation(1) anddeviation
from stationaryvaluesis penalized Herethe control
objective is to keep the statesand controls at their
initial valuesz = (100, 0.633) andu = (1,1).

The physicalbounds(z;,u;) > 0 areimposedover
the horizons. The SQP-algorithms were initialized

with the outputfrom the previous call for eachNMVPC

iteration.Notethatintegral actionis notimplemented.
This is justified by that only a comparisonof the
optimization methodsis investigated,and it is ex-

pectedthat introducing integral action will not in-

fluencethis comparisonA representatie simulation
resultis shavn in Figurel. The processvassimulated
by MATLAB'sode45 in all cases.
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Fig. 1. NMPC of CSTR. The figure shaws typical

resultsfor NMPC of the CSTR casewith A =

1. The variousdiscretizationmethodsproduced
nearly identical results.In the lower subfigure
the solid curve is for u; andthe dashedcurve
is for us. The stepin Cp, entersat time step
10, and this drives the statez, awai from the
equilibrium. If the controlinputsarekeptat the

equilibriuminput [1, 1], the systemwill settleat
anequilibriumpointatz = (100, 15.94).

Note that with the given initial conditionsand the
given disturbancethis caseis pathologicalwith re-
spectto inequality constraints,i.e. the active setis
emptyandunalteredhroughouthehorizonP.

Thecomputationsvereimplementedn MATLAB with
the gp-routines available as mex/ dl | -files on a
CompagDeskproEN / Pentiumll / 450MHz/ 128Mb
RAM running Windows NT4.0. Computationalre-
sultsare shovn in Tables1-3. h/P/M arethe sam-
pling time, predictionandmove horizons.The# vars.
tot/dep/freearethe total, dependenandfree number
of variables.Note that thereare no active inequality
constraintsn this case The Jacobiarnis eitheranalytic
or approximatedby finite differences:In mode fd1
only elementsalongthe block diagonalwere approx-
imated,while in modefd2 the full (dense)Jacobian
was approximated.Obj is the objectve value mea-
suredby summingthedeviationsof actualprosessut-
putsandimplementedcontrol actionsover the NMPC
horizon Nj;pc. CPU time is the time measuredyy
MATLAB's cput i me commandfrom startto end of
themainNMPC loop. Theresultsfor s SQP with ode45
with h = 2 shaved someripple that were causecby
the relaxed terminationcriteria. The resultsin Tables
1-3aresummarizedn thefollowing conclusions:

e sSQP is sensitie to the choicebetweenmplicit
andexplicit integrationmethodswhile both ba-
sic SQP andr SQP is insensitve to this.

¢ Finite differenceapproximation®f thefull Jaco-
bianin basicSQP andr SQP shouldbe avoided.

e Reducedgradient methodsare superior for a
large numberof variableswith few degreesof
freedom.

Note that a consequencef the first item is that si-
multaneousSQP methodscan have fewer variables
whenimplementedwith implicit discretizationmeth-
ods.Herethe steplength A canbe increasedeyond

the stability limit of explicit methodgbut not beyond
reasonabl@ccurag). Sincethe basicSQP ands SQP
methodsareapproximatelysimilarin implementation
compleity, s SQP shouldbechosenwhenexplicit dis-
cretizationschemesufice. In the faceof morechal-
lengingprocesseseducedHessiammethodsaresupe-
rior provided that the assumptiorthat there are few
degreesof freedomcontinueto hold. This assumption
commonlyholdsin NMPC.

4. DISCUSSION

In this paper different MPC stratajies were imple-

mentedon a caseand the computationalload and
quality of the resultswere investigated From tables
1-3 it is obsenred that among the different NMPC

methods,the r SQP method are preferablein view

of computationatime if implicit discretizatiormeth-
odsarerequired.In NMPC computationatime is lim-

ited, and feasibility of intermediatéteratesis essen-
tial for stability (Mayne et al. 2000), (Scokaertet

al. 1999). Generally SQP involves an adaptve sub-
problem,i.e. its computationatime is not determin-
istic. Consequentlyin NMPC feasiblepath SQP meth-
ods are preferredsince they allow terminationprior

to corvergence(Mayne 1997). Such methodsmust
solve the model constraintsat each SQP iteration,
which may be time consumingf the modelis repre-
sentedwith animplicit discretizationschemeHence,
s SQP becomegsomputationaliydemandingdf implicit

discretizationmethodsare applied,whereassimulta-
neousSQP methodsperform equally well regardless
of whetherimplicit or explicit discretizationscheme
are applied. Both methodsrequire that the selected
discretizationrschemds appropriatej.e. if the model
cannotbe simulatedwith a given method,it cannot
be expectedthat the optimizationalgorithmsperform
well either

Feasibility with respectto inequality constraintsis
easierto achieve. FSQP' (Lawrenceand Tits 2000)
andr FSQP (Martinsenand Foss2001) maintainfea-
sibility with respectto inequality constraints,and
asymptotideasibility with respecto nonlinearequal-
ity constraintsby combining these with an exact
penaltyfunctionandan arc search.The feasiblepath
sSQP methodis expectednot to performwell in the
presencef strongnonlinearitie{Ascheretal. 1995).
Thisis contradictoryto theneedsor NVPC; e.g.prob-
lemswith strongnonlinearitiesandtrajectorytracking
(Qin andBadgwell2000).

5. CONCLUSION

The practical considerationgliscussedn this paper
explorethe choicesanengineemusttake if hewants
to implementNMPC at a given processThe interplay
betweendiscretizationmethodsand optimization al-
gorithmshasbeeninvestigatedhrougha casestudy

First the engineermust select an appropriatedis-
cretization scheme.If he choosesan explicit dis-



Tablel. Nonlinear MPC on a CSTR: Basic SQP method.

Discretization | Horizons #vars. Jacobian Results
method h/P/M | tot/depl/free| analytic/fd1/fd2 Obj [ CPUtime
Explicit Euler 2/6/5 22/12/10 analytic 33.55 5.9s
Explicit Euler | 1/12/10 44/24/20 analytic 28.33 19s
Implicit Euler 2/6/5 22/12/10 analytic 31.41 9.5s
Implicit Euler | 1/12/10 44/24/20 analytic 27.85 45s
LobattollIC 2/6/5 34/24/10 analytic 32.37 7.3s
LobattollIC 2/6/5 34/24/10 fdl 32.35 22s
LobattollIC 2/6/5 34/24/10 fd2 32.35 25s
LobattollIC 1/12/10 68/48/20 analytic 28.07 35s
LobattolllC 1/12/10 68/48/20 fdl 28.06 96s
LobattollIC 1/12/10 68/48/20 fd2 28.06 222s
RK4 2/6/5 70/60/10 analytic 32.40 14.1s
RK4 2/6/5 70/60/10 fdl 32.39 30s
RK4 2/6/5 70/60/10 fd2 32.40 117s
RK4 1/12/10 | 140/120/20 analytic 28.05 119s
RK4 1/12/10 | 140/120/20 fdl 28.04 338s
RK4 1/12/10 | 140/120/20 fd2 28.05 1136s

Table2. Nonlinear MPCon a CSTR: s SQP method.

Discretization | Horizons #vars. Jacobian Results
method h/P/M | tot/depl/free | analytic/fd Obj | CPUtime
Explicit Euler 2/6/5 22/12/10 analytic 33.18 4.4s
Explicit Euler 2/6/5 22/12/10 fd 33.54 5.7s
Explicit Euler | 1/12/10 44/24/20 analytic 28.15 13.1s
Explicit Euler 1/12/10 44/24/20 fd 28.33 19.4s
Implicit Euler 2/6/5 22/12/10 analytic 31.41 33s
Implicit Euler 2/6/5 22/12/10 fd 31.41 131s
Implicit Euler | 1/12/10 44/24/20 analytic 27.85 94s
Implicit Euler 1/12/10 44/24/20 fd 27.83 745s
LobattollIC 2/6/5 34/24/10 analytic 32.37 49s
LobattollIC 2/6/5 34/24/10 fd 32.36 192s
LobattollIC 1/12/10 68/48/20 analytic 28.07 118s
LobattollIC 1/12/10 68/48/20 fd 28.07 1121s
RK4 2/6/5 70/60/10 analytic 32.40 4.3s
RK4 2/6/5 70/60/10 fd 32.40 10.0s
RK4 1/12/10 | 140/120/20| analytic 28.05 12.2s
RK4 1/12/10 | 140/120/20 fd 28.05 58s
ode45 2/6/5 22/12/10 fd 23.03 36s
ode45 1/12/10 44/24/20 fd 28.49 149s

Table3. Nonlinear MPCon a CSTR: r SQP method.

Discretization | Horizons #vars. Jacobian Results
method h/P/M | tot/dep/free| analytic/fd1/fd2 Obj [ CPUtime
Explicit Euler 2/6/5 22/12/10 analytic 33.57 6.1s
Explicit Euler | 1/12/10 44/24/10 analytic 28.27 13.4s
Implicit Euler 2/6/5 22/12/10 analytic 31.43 6.2s
Implicit Euler | 1/12/10 44/24/10 analytic 27.99 12.8s
LobattollIC 2/6/5 34/24/10 analytic 32.37 7.1s
LobattollIC 2/6/5 34/24/10 fdl 32.35 11.5s
LobattollIC 2/6/5 34/24/10 fd2 32.35 17.3s
LobattollIC 1/12/10 68/48/20 analytic 28.07 17.2s
LobattolllC 1/12/10 68/48/20 fd1 28.05 39s
LobattollIC 1/12/10 68/48/20 fd2 28.06 95s
RK4 2/6/5 70/60/10 analytic 32.40 9.1s
RK4 2/6/5 70/60/10 fd1 32.39 19s
RK4 2/6/5 70/60/10 fd2 32.40 71s
RK4 1/12/10 | 140/120/20 analytic 28.05 23s
RK4 1/12/10 | 140/120/20 fdl 28.04 58s
RK4 1/12/10 | 140/120/20 fd2 28.05 781s

cretizationscheme he can choosebetweensequen-  must be applied, the performanceof sSQP deterio-
tial or simultaneousptimizationmethodsSequential  rateswhile simultaneou$QP doesnot degrade.
methodsare easyto implement,while simultaneous

methodsareharderto implement.This appliesin par

ticular to reducedHessianmethodswhich may be

quite sophisticatedlf implicit discretizationmethods
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