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Abstract: An application of the extended Kalman filter for a nonlinear model of an activated
sludge process (ASP), working in an alternating aerobic-anoxic phase medium, is proposed.
The filter is used to estimate both the states and non-stationary disturbances, to better evaluate
changes in operating conditions. It is to be pointed out that, according to the structure of the
reduced nonlinear system, the observer is a two-alternated-observer scheme. Filtering results
are shown by using both experimental data and simulations. Copyright c

�
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1. INTRODUCTION

Wastewater treatment processes are known as very
complex systems, involving different time-scaled dy-
namics and unknown input disturbances. As in most
of real systems, control strategies are quite limited
due to the lack of on-line performant and low cost
instrumentation. Dealing with this problem requires
the attention to preliminary steps as process mod-
elling, model reduction and observation. This paper
addresses the problem of reconstructing unmeasurable
state variables and/or unknown inputs for a single re-
actor ASP.

Different kinds of models describing the sludge pro-
cess can be found in the literature. Holmberg (1982)
has proposed an empirical model for specific analysis,
design and control purposes. For carbon and nitrogen
removal the standard industrial is the Activated Sludge
Model (ASM) No. 1 developed by the task group
of the recently renamed International Association on
Water Quality (IAWQ) (Henze et al., 1987), which
includes thirteen state variables and more than fifteen
parameters. Complex mathematical models as ASM
No.1 are difficult to handle for estimation/control pur-
poses. Hence, simplified models are more exploitable,
always respecting a compromise between model com-

plexity and model precision based upon ulterior goals
in control design.

In previous works, several nonlinear reduced mo-
dels have been presented (Jeppson, 1995; Julien et
al., 1999; Zhao and Kümmel, 1995). In this article we
use a reduced nonlinear model developed by (Gómez-
Quintero et al., 2000) involving four state differential
equations and thirteen parameters. The reduction strat-
egy applied to obtain this model has taken into account
some biochemical considerations and grouping of pa-
rameters. The reduced-order model matches specific
characteristics for a laboratory pilot plant.

This paper concerns the application of an extended
Kalman filter (EKF) to observe the unmeasurable vari-
ables and one of the most sensitive unknown inputs of
the system, the influent nitrogen concentration. This
filtering procedure is simple to apply and does not
involve any numerical effort which makes it suitable
for on-line observation. In previous works the prob-
lem of state and parameter estimation in an alter-
nating ASP by using an EKF has been considered
for a single aerobic-anoxic model (Zhao and Küm-
mel, 1995; Lukasse et al., 1999). We propose a two-
alternated-observer scheme, which takes into account
changes in model structure associated to the switching
from aerobic to anoxic phases in the reactor.
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2. THE EXTENDED KALMAN FILTER

State estimation in biological processes has been stud-
ied since about three decades for several specific ap-
plications (see a survey in (Soroush, 1998)) and big
efforts to develop reliable observers for nonlinear sys-
tems have been done. Basically, they can be classi-
fied on two groups : those that are extensions of the
Kalman filter and the Luenberger observer (Jazwinski,
1970; Zeitz, 1987), and those derivated from the non-
linear control theory (Krener and Isidori, 1983) but
which can only be applied to restricted classes of
nonlinear processes (Farza et al., 1999; Gauthier and
Kupka, 1994).

The EKF has been applied successfully to many chem-
ical and biochemical processes despite the linear first-
order approximation involved in the approach (Bastin
and Dochain, 1990; Aubrun et al., 2001). However,
a few applications of this algorithm to an alternating
ASP are available in the literature (Zhao and Küm-
mel, 1995; Lukasse et al., 1999).

The EKF is used here both to estimate the state vector
of the nonlinear system and to identify time-varying
disturbances considered as time-varying parameters.
The disturbances can be modelled as stochastic vari-
ables which are included as new states needed to
eliminate bias in the state estimates when the system
operates under non-ideal conditions. For this purpose,
let us consider the nonlinear continuous-time system
with discrete-time observation of the form:������	��
����������������������
��������	��
��������� �
����!�	��
"�$#%�������	��
��"#'&( )� ������ �
*�+ ��,-��� �+ ��� �+ ��./
���0�+ (1)

where * is the vector of measured outputs, �1�2 � � � ��3�4 represents the complete vector of internal
states, with � � the modelled deterministic part and� � the stochastic part involving time-varying model
parameters and/or disturbances. �5� 2 � � � �6374 and 0
are Gaussian white noise zero mean and covariance
matrices 8 �7��
 and 9 + , respectively. � is the time vari-
able and . corresponds to the iteration at time �:+ .
The algorithm is based on the steps of (Queinnec et
al., 1999):; Prediction of the state and the output estimates

at time .<�>= by numerical integration of (1)
between ���?� + and �%�@� +BA-C .; Linearized approximation of � and , around
the state estimate at time .D�E= , i.e., Jacobian
matrices of system (1) :FHG>IJLK�MK�N�O K�MK�N�PQ Q RSUTWV G5X K�YK�N�O K�YK�N�P-Z; Prediction of the positive semi-definite covari-
ance matrix [ at time .U�5= by numerical inte-
gration of the filter differential Riccati equation.; Determination of the observation gain, and read-
justment of the state estimate and covariance ma-
trix at time .\�@= .

The noise covariance matrices 8 �� �
 and 9^] as the
initial value of Riccati matrix solution [_] are tuning
parameters to be chosen conveniently in order to avoid
poor and biased estimates of the nonlinear system.

3. MODEL DESCRIPTION

The approach developed in this paper is based on
the nonlinear model given in (Gómez-Quintero et al.,
2000) and is briefly presented in this section.

The ASM describes the elimination process of ni-
trogen and carbon by alternating aerobic and anoxic
phases. It has been adapted to a specific wastewater
treatment process by Julien et al. (Julien et al., 1999).

Then, the following strategy for model reduction was
applied: first, certains approximations were done by
observing the time evolution of some of the ASM vari-
ables and their influence in process kinetics in order to
reduce the number of differential equations; second, a
grouping of some of the original parameters with those
generated by the lattest simplifications where done,
resulting in a reduction of the new model parameters.
Among the whole set of parameters, some of them
have kept their physical meaning while some others
have to be identified.

The four dynamics described by this reduced nonlin-
ear model are the concentrations of: readily biodegra-
dable substrate `ba , nitrate `dc'e�f , ammonia `dchgji and
dissolved oxygen ` e�k . These four state variables are
considered as the most important for our case study.
The reduced nonlinear model is given by the following
set of equations :lm�noG"pDm�nrqtsju�pUvwm�n v)x<y pHuDpUvwz{m�nx%|�}�~��� m�n y m����m�����u��<���:� u m������m��_���/u��D�_��� �<���w�m�����uD�<���w� zu | i y m ���m�����u��<���:� u��r�_���:� m �_���m��_���/u��D�_��� � ���w�m�����u��<���w� zlm��_���jG xjy pHu�pUv:z�m������x%|�}-~ x ������ ��� � � m n m��_���m �_��� uD� �_��� �<���w�m ��� u�� ���:�u | k m �j���m�������u��D�j���w���/� m ���m����/u��<���:���/�lm��j���jG"pDm��j���wq�s x<y pHuDp v z�m��j���x%|�}�� �j��� m n y m ���m ��� u�� ���:� u m �_���m ����� u�� �_��� � �����m ��� u�� ���:� zx%| k m��j���m ����� u�� �j���w���/� m����m ��� u�� ���:���/� u | flm ��� G xjy pHu�p v z{m ��� u<���/� y m ��� P��:� x m ��� zx%|�} ~ x � ���� m�n m����m�����uD�<�����x����  �¡¢| k m��j���m �j��� u�� ���������/� m����m ��� u�� ���:���/�
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where the terms £�¤ � ¤�¥ C:¦¨§¨§¨§¨¦ © are parameters specific to
the reduced order model. ª and ª¬« are the wastewater
inflow and the carbonaceous matter flow respectively.
Physical constants and yields values are those which
had been identified for the ASM model (Julien et
al., 1999).

Remark 3.1. During aerobic phase, the dissolved oxy-
gen concentration ( ` e�k ) is assumed to be high enough
to avoid inhibition in biological growth reactions.
Model dynamics are represented by a fourth-order
equation system (2). Once the oxygen transfert rate
is settled to zero ( .��®^�¯ , no oxygen is supplied to
the aeration tank) the dissolved oxygen remaining in
the reactor is consumed by the biomass and `-e k be-
comes equal to zero (this is the beginning of the anoxic
phase). The fourth differential equation associated to
oxygen dynamics becomes irrelevant and the terms
related to `be k dissapear from the remaining equations
in (2). Thus, the model is simplified and reduced to a
third-order system. This mathematical fact should be
taken into account for the filter design.

For identification purpose, we generally dispose of
off-line measurements of dissolved oxygen, ammonia
and nitrate concentrations. In this study, two sets of
data have been used to test the filter.

The first one is composed of experimental data. Mea-
surements of `dcUe f , `�c\g i and `�e k have been ob-
tained in a laboratory pilot plant, at a 20 min. sampling
period during two periods of six hours. Parameters £°¤
may be determined by calculation from their mathe-
matical expression and ASM parameters. They have
also been identified on the first period of six hours,
while the second period, obtained a few days latter
has been kept for validation and filtering. The inflow
rate has been increased by 75% of the initial value, at
time � = 3 hours, for the second period. Calculated and
identified parameters £ ¤ are shown in Table 1 and the
reduced-order model simulations are plotted on Figure
1. The reference model plotted in this figure is an
adaptation of the ASM No.1 proposed by Julien et al.
(Julien et al., 1999). More details about the reduced-
order model performances and parameter values can
be found in (Gómez-Quintero et al., 2000).

pilot plant data GPSX data
Parameter Calculated Identified Identified

Values Values Values|�}
( ~�±�² ) 95.81 62.59 46.91| k (³ ±µ´ f ±¢² ) 197.65 187.37 276.73| f (³ ±µ´ f ±¢² ) 78.88 52.63 87.64| i (³ ±µ´ f ±¢² ) 1516.1 987.2 1546.8

Table 1. Values of parameters £ ¤
The second set of data is provided by a numerical
simulation of an ASP run on the GPSX software.
Simulation settings correspond to a realistic plant con-
figuration. Data from states `�cUe�f , `�chgji and `�e�k are
used at a 20 min. sampling period, during 96 hours.

Influent characteristics are changed every 24 hours.
Operating conditions on the first 24 hours have been
settled as the initial conditions for the reduced-order
model. The identification of parameters £j¤ � ¤�¥ C:¦¨§¨§¨§ ¦ © has
been done by using the first six-hours interval of nu-
merical values. Results are also listed on Table 1.

For filtering purpose, we have only considered the
dissolved oxygen and the nitrate concentration at a 20
min. sampling period as the available on-line measure-
ments, which is coherent with the real measurements
limitations of our pilot plant.

4. REDUCED MODEL FILTERING

Considering that our objective is a full-order observer
design, the deterministic state vector to be estimated
by the EKF has variables `%a , `�c'e f , `�c\g i and `�e k
as components. The choice of the stochastic states has
been assisted by considering the results from a sensi-
tivity study of the reduced-order model to parameters
and influent characteristics. These additional states
should help the model to match the real process under
unexpected changes on operating conditions and/or
disturbances.

In the one hand, model parameters inherited from
the ASM No. 1 (e.g. ¶�g , ·"cUe f ) are assumed to
preserve standard values found in literature (Henze
et al., 1987). Parameters £�¤ � ¤�¥ C:¦¨§¨§¨§ ¦ © can be identified
a priori or re-identified on-line from a set of mea-
surements. Thus, they are not a priority to be added
as stochastic states. On the other hand, the nonlin-
ear model has shown to be very sensitive to changes
performed on influent settings (i.e. variations on the
influent biodegradable substrate concentration ` a q�s
and ammonia concentration ` c\gji¢¤	¸ ). Any knowledge
about these concentrations is currently not available
on-line, they are even hardly measured at all. Ammo-
nia input concentration is the most influential, so it is
a good choice as stochastic state.

With this set of states ( `%a , `�cUe f , `�c\g i , `�e k ,`�chg i ¤	¸ ) our attention is then addressed to the avail-
able on-line measurements to determine if the system
meets the observability requirements for filtering de-
sign.

4.1 State observability

For nonlinear systems the notion of observability is
reduced to test the local observability of the system.
This theory is not reviewed here, a complete descrip-
tion can be found in (Soroush, 1997).

Attempting to match the realistic operating environ-
ment for this class of processes only measurements of
nitrate ( * C ) and dissolved oxygen ( *�¹ ) are considered.
Under this assumption, the system with extended state



vector ( ` a , ` cUe�f , ` c\gji , ` e�k , ` chgji¢¤	¸ ) is locally ob-
servable. During the anoxic phase, it has been said that
the nonlinear system becomes a third-order system as
the dissolved oxygen concentration is zero. Although
the unique system output is the nitrate concentration,
the extended system with decreased state vector ( `-a ,`�cUe�f , `�c\g�i , `�c\gji¢¤	¸ ) still remains locally observ-
able. So, an EKF can be designed.

4.2 The two-alternated-filter implementation

Let us remember that the dynamics of the ASP de-
scribed by the nonlinear model (2) evolve through
two periods, aerobic phase and anoxic phase, plus an
intermediate phase between the stop of the aeration
and the begining of the anoxic period. Both of aerobic
and anoxic phases are periodically sequenced on the
bioreactor to accomplish carbon and nitrogen removal.

During the aerobic phase, the dissolved oxygen is
present on biomass reactions. ` e�k is not zero, our
extended model is fifth degree. Tuning matrices for
the EKF are of proper dimensions : [ and 8 are
symetric nonsingular matrices of dimension five. Mea-
surements of two variables are available ( `bcUe f , `�e k )
so the output noise covariance matrix 9 has dimension
two.

Once the alternance to the anoxic phase is done
( .  ® =0, there is no dissolved oxygen in the bioreac-
tor), the oxygen dynamics equation is no more useful
and the extended model becomes of fourth degree.
Only nitrate concentration measurements are available
during this period. This implies that our filter design is
also modified. All design matrices become of the right
dimensions by losing the row/column associated to the
dissolved oxygen. Riccati’s equation solution [ is also
adjusted in this manner.

Nevertheless, when the anoxic period is finished and a
new aerobic phase happens, modifications on filtering
scheme should be done to re-extend our system from
the fourth degree to the fifth degree. Extension of co-
variances matrices 9 and 8 is direct. A new Riccati’s
matrix solution [ of dimension five is formed by all
the terms of the reduced fourth-dimension matrix [
and the row/column associated to the dissolved oxy-
gen concentration is reinitialized with the correspond-
ing [°] values ( [°] is a diagonal matrix meaning that
without a priori knowledge, no error covariances in
state estimates are considered). Differents procedures
to reinitialize these terms were tested but numerical
simulations have shown more adequate results for
the chosen option. This can be justified by the fact
that considering no errors covariances related to the
dissolved oxygen concentration is less compromising
than assuming any value whatever (no knowlegde is
available from the lattest anoxic phase), or better than
assigning covariances values related to the previous
aerobic period (lattest values correspond to the end of

the aerobic phase when the whole system dynamics
are quite different from those of the beginning).

4.3 Observer stability

Some comments have to be done relative to the stabil-
ity of the two-alternated-observer structure developed
in this paper. The observed system may be viewed as
an hybrid system which switches between three suc-
cessive states: aerobic phase, transient aerobic phase
without aeration and anoxic phase.

The stability of such an hybrid system may be guar-
anteed through Lyapunov theory. In the present case,
the Kalman filtering approach implicitely guarantees
the exitence of a Lyapunov matrice common to both
subsystems at the switching instant, and, then, the
stability of the whole system.

4.4 Simulation results

Numerical simulations of the EKF have been done
with the experimental set of data used for model va-
lidation and the simulated set of data described in the
previous section. Initial values for diagonal tuning ma-
trices 9 and 8 were selected considering the expected
errors between real process and operating conditions
but were adjusted after repeated simulations until find-
ing a satisfactory filter performance (good conver-
gence speed and noise attenuation). The elements of
the diagonal matrix [ ] have also been adjusted to
represent the variances of initialization errors in the
state estimates.

For the experimental data, the chosen tuning matri-
ces are 8 �»º�¼{®!½ 2  /¾¨ �¿)�:=r �À�Á¢�:=r �À�Á��:=r �À�Á��� /¾¨¿ 3 , 9 �º�¼{®!½ 2 Â ¾	=� �À ¹ � Â ¾	=� �À ¹ 3 and [j] �@º�¼�®!½ 2 Ã �� /¾¨¿/�¢=� �À ¹ �� /¾¨¿/�=r 3 . Results are illustrated on figure 2. The initial con-
centrations are assumed unknown. Adjusts made by
the filter when a measurement is available can be eas-
ily observed on the figure. Dynamics of the continuous
Riccati equation are fast which does not inhibit the
filter’s response speed. State estimates are satisfactory,
in particular those for ` c\g�i and ` chgji¢¤	¸ . Data of
ammonia concentration is only used as a graphical re-
ference to evaluate the filter performance. Inflow am-
monia estimate agrees with experimental values (its
measured value has been 62.8 ½d¾¨Ä�À�Á ). The estimate
of the readily biodegradable substrate concentration
varies between 9 - 16 ½d¾¨Ä�À�Á which corresponds to
a reasonable fluctuation interval under these practical
operating conditions. Simulations with different ini-
tial conditions were done. Specifically, a minimum of
knowledge about nitrogen concentration values should
be added to ensure a good state estimation.

Figure 3 shows the performance of the EKF for
the second set of data (only one aerobic/anoxic cy-
cle is shown). The diagonal tuning matrices for this
case are 8 �5º�¼{®�½ 2  /¾¨ Ã ��=� À © �:=r À © �:=r À © �� /¾¨ �¿ 3 , 9 �



º�¼�®!½ 2 =� �À © �L=r �À © 3 and [j] �(º�¼{®!½ 2  /¾	=���=� �À�Ár�:=r �À�Á��=r �À�Á��� )¾Å= 3 . Ammonia concentration is estimated suc-
cesfully along the whole simulation (here also, ammo-
nia data are plotted only as graphical reference). The
biodegradable substrate estimate also remains realistic
for this second case. The influent ammonia estimate
is adjusted on-line by the filter to compensate model
mismatches with respect to the initial settings. The es-
timated values for this state variable may certainly cor-
respond to realistic values of `�c\gji¢¤	¸ . In fact, they are
not so far from those fixed by the simulation : 35, 17.5,
26.25 and 43.75 ½�¾ Ä�À�Á from the first to the fourth
day respectively. These differences can be explained
by the effects of the numerous simplifications on ASM
dynamics that cannot be entirely reconstituted by the
nonlinear model.

5. CONCLUSION

A nonlinear estimation approach by extended Kalman
filtering has been applied to a complex biochemical
process, i.e. an activated sludge reduced model with
alternating aerobic and anoxic phases.

This method has shown to be satisfactory to estimate
the state variables when disturbances are included as
additional stochastic states. Utility of these additional
states is avoiding model mismatches under certain
ranges of changes in operating conditions. It has been
discussed the importance of a good choice of stochas-
tic states on the basis of the most influential terms
for the model and the knowledge of the most frequent
experimental variations.

It is known that covariance matrices have to be well
settled for good performance of the EKF. As no par-
ticular method is available, a suitable set of values
has been obtained only by repeated simulations which
may imply a considerable effort by the designer.

Initial states estimates should be partially known from
process characteristics (not an exact knowledge is
required but an approximated one) to improve al-
gorithm’s convergence speed. Off-line measurements
can ensure the availability of some useful information
for our case study.
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Fig. 1. Experiment 1. Model identification: reference model, a; reduced-order model with identified parameters, b; experimental data, c;
reduced-order model with calculated parameters, d.
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Fig. 3. GPSX data. State estimation with EKF: estimates, a; nonlinear model, b; measurements, c.


