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Abstract: The set-membership gproach t o the state estimation of dynamical
systems subjected to uncertain disturbances is developed. Optimal outer ellipsoidal
estimates on reachable sets are considered, and v arious optimality criteria are
discussed. Nonlinear differential equations describing t he evolution of optimal
estimating ellipsoids are analyzed. The asymptotic behavior of the ellipsoids is
investigated in the vicinity of the initial time 1nstant and anfinity. Control
problem f or the systems subjected t o uncertain perturbations is analyzed in the
framework of the optimal ellipsoidal estimation.
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1. INTRODUCTION

Dynamical systems s ubjected & unknown but
bounded pe rturbations appear in nmerous ap-
plications. The set-membership approach to such
systems ma kes 1t possible to obtain outer guar-

anteed e stimates on reachable sets and t hus to

evaluate all possible trajectories of the systems.
In t his context, the ellipsoidal estimation seems
to be the most efficient technique. Among 1ts
advantages are the explicit form o f approximation,
smooth boundaries, invariance with r espect to
linear transformations, possibility of optimization,
etc. The ellipsoidal technique for the approxima-
tion of reachable sets was considered by a number
of authors. The earlier results were summa rized
in Schweppe (1973). The ellipsoidal estimates op-
timal in t he sense of volume were first proposed

I Partially supported by Russian Foundation of Basic
Research (Grant 02-01-00201)

by Chernousko (1980). General optimality criteria
for the ellipsoidal estimates were analyzed in the
books by Chernousko (1994). Various aspects of
ellipsoidal estimation of reachable sets were con-
sidered inKurzhanski and Valyi (1997), Norton
(1994, 1995), Milanese (1996).

In this paper, optimal outer ellipsoidal estimates
on reachable sets are investigated for various op-
timality criteria. Nonlinear differential equations
governing the evolution of ellipsoids are analyzed,
and the asymptotic behavior of ellipsoids is stud-
ied for different cases. The main attention is paid
to t he criterion e qual to t hergjection of the
approximating ellipsoid onto the given direction.

2. ELLIPSOIDAL ES TIMATION

Consider a linear system d ordinary differential
equations



t=Alt)x+ Bt)u+ f(t), t>s (1)
Here, x € R” is the n-vector of state, u € R™
is the m-vector of unknown disturbances, the dot
denotes the differentiation with respect to time ¢,
A is an n X n matrix, f is an n-vector, B 1s an
n x m matrix. The matrices A(t) and B(t) as well
as the vector f(t) are specified functions of time
for ¢ > s where s is the initial time instant.

Denote by FE(a,) the following n-dimensional
ellipsoid

E(a,Q) = {x : (Q_l(x —a),(x — a)) < 1} (2)

where a € R™ is the center of the ellipsoid and
is the positive definite n x n matrix. Assume that
the unknown perturbation u(t) is bounded by the
ellipsoid as follows

u(t) € E(0,G(t)), t>s (3)

where (G(t) is a m x m matrix specified for ¢ > s.

The initial data for the equation (1) are also
uncertain and described by the inclusion

z(s) € M = E(ag, Qo) (4)

where ag is a given n-vector and @)y is a given
n X n positive definite matrix.

The reachable set D(t, s, M) of the system (1) for
t > s is defined as the set of all ends #(t) of
the state trajectories z(-) at the time instant ¢
compatible with the conditions (1), (3), and (4).

The problem is to find an outer ellipsoidal approx-
imation of the reachable set D(t,s, M) for t > s
such that

D(t, s, M) C E(a(t), (1)) (5)

In other words, the n-vector a(t) and the n x n
positive definite matrix Q(t) are to be found which
determine, respectively, the center and the matrix
of the approximating ellipsoid. It is natural to find
the ”smallest” outer ellipsoid which is, in some
sense, the closest to the reachable set D(t, s, M).

3. OPTIMAL ELLIPSOIDS

The ellipsoid E(a, Q) will be characterized by the
scalar optimality criterion, or the cost function J

which is a specified function L(Q) of the matrix
@ of the ellipsoid:

J(E(a,Q)) = L(Q) (6)

Suppose the function L(Q) in (6) is defined for
all symmetric positive definite matrices @, 1s
smooth and monotone. The latter property means

that L(Q1) > L(Q2), if the difference @1 —
> 1s a nonnegative definite matrix. In other
words, if the inclusion F(a, Q1) D F(a, @2) holds,
then J(E(a, Q1)) > J(E(a,Q2)).

Consider some important particular cases of the
general optimality criterion (6).

1. The volume of an ellipsoid is given by
J(E(a,Q)) = L(Q) = ca(det @' (7)

where ¢, 1s a constant depending on n.

2. The sum of the squared semiaxes of an ellipsoid
is equal to

J=1(Q) =TrQ (8)

3. The linear optimality criterion
J=L(Q) =Tr(CQ) (9)
where (' is a symmetric nonnegative definite n x n

matrix, is a generalization of (8).

4. The following criterion
J=L(Q) = (Qu,v) (10)

where v is a given n-vector, is a particular case of
the linear criterion (9). Here,

C=vxv, Cy=vv;, i,j=1...,n(l1)
where the symbol * denotes the dyadic product of
vectors.

The criterion (10) has a clear geometric interpre-
tation: it is related to the projection II, (E) of the
ellipsoid E(a, @) onto the direction of the vector
v. The above-mentioned projection 1s expressed
through the support function p(v, E) of the ellip-
soid as follows

I, (E) = p(v. B) + p(—v. E)  (12)

Since the support function for the ellipsoid (2) is
given by

p(v, B) = (Qu,v)"? + (a,v) (13)

it follows from (12) and (13) that
I, (E) = 2(Qu, v)'/?

Thus, minimization of the criterion (10) is equiv-
alent to the minimization of the projection of
the ellipsoid onto the direction of the vector wv.
Other examples of optimality criteria are given in

Chernousko (1994).

The smooth family E*(t) = F(a(t), Q(t)) of ellip-
soids is called locally optimal, if for all T € [s,1]

E*(t) D D, 7, E*(7)) (14)



(such ellipsoids are called superreachable, see

Chernousko (1994)), and, besides, for all t > s

dL(Q())

pm — min (15)

7=t

where the minimum is taken over all smooth fam-
ilies of superreachable ellipsoids satisfying (14).

The smooth family of superreachable ellipsoids
satisfying (14) is called globally optimal for the
given t = T, if it solves the minimization prob-
lem L(Q(T)) — min.

As shown in Chernousko (1994), the determina-
tion of globally optimal ellipsoids is reduced to the
two-point boundary value problem. In this paper,
only locally optimal ellipsoids are considered.

The parameters a(t) and Q(t) of the locally op-
timal ellipsoids satisfy the following initial value
problems

a=A)a+ f(t), a(s)=ao (16)

Q=AM)Q+ QAT () +hQ+h™ K(t) (17)

o= {o[tore] /o[t
K(t) = BO)G)B™ (1), Q(s) = Qo

Here, T denotes a transposed matrix. Note that
the ellipsoids optimal in the sense of volume, i.e.
for L(Q) given by (7), are invariant with respect
to linear transformations of the z-space. The el-
lipsoids optimal in the sense of linear criteria (8)—
(10) lack the invariance property but can provide
better approximations than the ellipsoid optimal
in the sense of volume and lead to more simple
equations. For the case of the linear criterion (9),
equation (17) becomes

Q=AQ+QAT +hQ+h7'K, Q(s) = Qo
(18)
K = BGBT, h=[Tr(CK)/Tr(CQ)"*

The vector v in the criterion (10) need not to be
constant and can be assumed to be a function of
time: v = v(t). It can be chosen arbitrarily, e.g.,
its choice can be made in order to minimize the
projection of the reachable set onto the desired
direction. For any piecewise continuous v(t), the
ellipsoids F(a(t), Q(t)) where the center a(t) and
the matrix Q(¢) satisfy the initial value problems
(16) and (17), respectively, provide the outer
estimates of the reachable set. Therefore, the
vector function v(¢) can be chosen in such a way
as to simplify and/or improve the outer estimates
of the reachable set.

4. TRANSFORMATION OF EQUATIONS

Nonlinear equation (18) for the matrix Q(¢) de-
pends on three matrices: A, K, and C'. This equa-
tion can be simplified by the change of variable

Q=VQ.V" (19)

where V(t) is an invertible n x n matrix and
Q). is a new variable. Taking V' (¢) equal to the
fundamental matrix of equation (1), i.e.

V=AV, V(s)=I, t>s (20)

where [ is the unit n X n matrix, one obtains

from (18), (20)

Q* = heQs + hs:l[(*a Q*(S) = Qo
hy = [Tr(C.K.)/ Te(CLQx)]? (21)
K.=VIKk (WY, c.=vTcv

Let the matrix K be positive definite for all ¢ > s.
Substituting V(t) = [K(t)]'/?, one obtains from
(18) and (19)

Qv = AuQu + QuAT + Q. + hI'I
Q«(s) = K™%(5)Qo K ~/%(s)
A, = K~1/2 (AKW _ dKl/z/dt) (22)

ol 2 12 _ Tr O e
Co =K /'"°CK™*, hy = [7Tr(C*Q*)]
Note that each of equations (21) and (22) for Q.
depends only on two matrices: K, and Ci, or A,
and Cy, for equations (21) and (22), respectively.
Thus, without loss of generality, one can always
put either A = 0 or K = I (in case of a positive
definite matrix K) in equations (18). For the
criterion (10), the formula for A in (18) becomes

h=[(Kv,v)/ (Qu,v)]'/" (23)

Note that all formulas for the criterion (10) are
invariant with respect to the change v — Av where
A 1s a scalar. Therefore, one can always assume
that v is a unit vector: |v| = 1.

5. EXAMPLE: EXACT SOLUTION

Consider a system of the second order
i‘l = T2, i‘z = U
(24)
lul <1, 21(0) = 22(0) =0
for which an exact solution of nonlinear equations
(18) can be obtained and compared with the



reachable set. The optimality criterion (10) is
chosen with v; = 0, v = 1 so that the rate of
the projection of the outer approximating ellipse
onto the axis x5 is minimized. Equations (18) and

(23) for this example give
Q11 =2Q12 + hQ11, Q12 = Qun+hQ1>
Qoo =hQuu+ 7", h=Qn*  (25)
@11(0) = Q12(0) = Q22(0) =0

The nonlinear initial value problem (25) has the
following exact solution

1 1
Qi1 = §t4, Q2= 5153, Qa2 = 1* (26)

Equations (16) for the center of the approximating
ellipse give for the example (24): a1 (t) = a2(t) =
0. Thus, the center of the ellipse stays at the origin
of coordinates, and its matrix is defined by (26).
This ellipse £ is shown in Fig. 1. For comparison,
the exact reachable set D and the approximating
ellipse Fs locally optimal in the sense of volume
are also depicted in Fig. 1 (see Chernousko 1994).
These sets are drawn in the normalized variables
21t~% and x5t~ 1; in these variables the sets remain
constant. The areas Vp of the reachable set, V;
and V5 of the corresponding ellipses F; and FEs
are

Vp = 2/3 ~ 0.667
Vi =m(2-3Y%) 71~ 0.907 (27)

Vo =8r(9-5Y%) "t a1.25

It is obvious from Fig. 1 and formulas (27) that
the ellipse F; gives much better approximation of
the reachable set D than the ellipse E5, even in
the sense of volume. This example shows that the
ellipsoids optimal in the sense of the criterion (10)
may give a rather efficient outer approximation of
reachable sets.

6. ASYMPTOTIC BEHAVIOR OF
ELLIPSOIDS NEAR THE INITIAL POINT

Consider an important special case, where the
initial set M in (4) degenerates into a point (as in
(24)). In this case #(s) = ag, Qo = 0 in (4), and
the right-hand side of the matrix equation (18) has
a singularity at ¢ = s. Thus, the straightforward
numerical integration near ¢ = s in this case is
impossible.

The analysis of the arising singularity will be
carried out for the case where the matrix K in
(18) is positive definite. Therefore, equation (18)

can be replaced by equation (22). Consider the
latter equation under zero initial conditions

Qv = AuQu 4 QAT + hQu + b1,
(28)
hy = [TrCy /Tr(CLQ2)]Y?, Qu(s) =0

The matrices A.(¢) and C,(t) are supposed to be
smooth functions of time, so that the following
expansions are true

Au(t) = Ag+0A; +0(0%), 6 =t —5>0
(29)
C. (t) =Cy+6C) + 0(92)

Here, Ay, A1, Cy, and Cy are constant matrices.
The solution of the initial value problem (28)
i1s sought as a power series satisfying the initial

condition Q. (s) = 0 in (28)
Q. (1) = 0Q1 +67Q2 + 6°Qs + 07 Q4 + O(6°)(30)

Here, @1, )2, . .. are constant symmetric matrices
as yet unknown. By substituting expansions (29)
and (30) into equation (28) and equating coeffi-
cients of the obtained expansions in the both sides
of the obtained equations, one can find the un-
known coefficients in expansion (30). After rather
lengthy but straightforward calculations, one ob-
tains

Q1=0, Q=1 Qz3=1Dp

2 2 [Tr(Co Do)]?
= DI+ D+ ——— - (31
@a=3Do+ 3D 12 (Tr Cy)? (81)
TI'(CQDQ)
6TrCy  °

where the following denotations are used
Do=(Ao+ A7) /2, Di=(A+A])/2

Note that the matrix €7 from (29) does not
appear in the coefficients (31).

Consider two particular cases.

1) Let Cy = I; this equality holds in the case (8).
Then
2 (Tr Dy)*

2 Tr Dy
—Zpi+ D -
Qe=3Do+ 3D+ =505 6n

Dy (32)

Here, the expansions (31), (32) coincide with those
given in Chernousko (1994) for the ellipsoids opti-
mal in the sense of volume. Thus, the approximat-
ing ellipsoids optimal in the sense of the sum of
squared semiaxes coincide with ellipsoids locally
optimal in the sense of volume, up to the terms of

order of O(6°).

2) For the case (10) we have Cy = v % v. Here we
obtain from (31)
2 (Dgv, v)2

_ 2. (Dov, v)
Q4—3D0+3D1+ 19 I - R

Dy
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Fig. 1. Reachable set approximations by ellipsoids

The obtained expansions can be used for starting
the numerical integration of equations (18) near
the initial point ¢t = s in case of Q(s) = 0.

7. ASYMPTOTIC BEHAVIOR OF
ELLIPSOIDS AT INFINITY

Here, the asymptotic behavior of approximating
ellipsoids locally optimal in the sense of criterion
(8) is studied at infinity, i.e. as t — oco. Suppose
for simplicity that the matrix K in equations (18)
is positive definite, so that equations of ellipsoids
can be taken in the form (22) which corresponds
to the case K = I. Let the matrix C. in (22)
have the form (11), where v is a constant unit
vector, |v] = 1, and the matrix A, be constant
and diagonal:

A =diag(ag, ... an), o1 <as <. < oy, (33)
Then the solution of the matrix equation (22) is a
diagonal matrix, its diagonal elements y; (¢) being
positive and equal to the squares of semiaxes of
the approximating ellipsoid:

Q«(1) = diag(n (1), .-, v (1)) (34)

Equation (22) under the conditions (33) and (34)
takes the form

i = 205y + hayi + b, i=1,...n (35)

Here, h, can be presented in the form (23) with
K=1,ie

" —-1/2
h = (Z vfyi) (36)

i=1

Suppose at least one of «; is nonnegative: a,, > 0.
Then, since y,(t) > 0, the right-hand side of the
nth equation (35) is positive for all ¢, and y, (%)
grows monotonically with ¢. The supposition that
there exists a bounded limit y,(t) — y2 > 0 as
t — oo leads to the contradiction with the nth
equation (35): its left-hand side tends to zero,
whereas the right-hand side is nonzero as t — oo.
Therefore, y, (t) = oo as t = oo. Then, according
to (36), he — 0 and k7' — oo as ¢ — oo. Thus,
the right-hand sides of all equations (35) tend to
infinity as ¢ — oo, and all y; — co as t — oo.

Consider now the case where all a; are negative
and denote

aj=—Fi, b>2P>...28 >0 (37)

Equations (35) can be rewritten as follows

Ui = =28y + hoyi + hTT, i=1,...,n(38)
Setting the right-hand sides of the system (38)
equal to zero, one can find the stationary points
of this system:

n —-1/2
1
0_ - py= vZy? 39
Y= a0 (E Zyz) (39)

i=1

Substituting y? into the formula (39) for hg, one
obtains the equation for hg:

n

1 v2

h—ozzil (40)

i=1 Qﬁl - ho

Since y? > 0 and 8, < G for all i = 1,...,n,
see (37), only those values of hy are to be taken
into account for which 0 < hy < 28,. When
hp changes from 0 to 23,, the left-hand side of
equation (40) decreases monotonically from oo to
(28,)71, whereas the right-hand side of this equa-
tion increases from some positive value to oo (note
that |v| = 1). Therefore, there exists a unique
positive root hg € (0,203,) of equation (40). Sub-
stituting this root into equations (39), one obtains
the unique stationary point y?, i = 1,...,n of
system (38).

Numerical investigation of system (38) shows
that, in a wide range of parameter variation,
the stationary point is asymptotically stable and
attracts all solutions of system (38) in the do-
mainy; > 0,i=1,...,n.



8. CONTROL IN THE PRESENCE OF
PERTURBATIONS

Consider a system subjected to the control w and
perturbation u

t=At)x + BQ)u+ W(t)w+ f(t), t > s (41)

Here, w(t) is a k-vector of control, W (?) is a given
n X k matrix, the other denotations are the same
as in (1). Suppose the perturbation u is caused by
the imperfections of the control implementation,
and the possible magnitude of u grows with the
magnitude of the control w. More exactly, we
assume that the matrices B in (41) and G in (3)
depend on w in such a way that the matrix K
from (17) is presented as follows

K = BGBT = |w|*R(t) (42)

where R(t) is a given positive definite n x n
matrix. Using the transformation (19), (20) and
the criterion (10), we write equations (16), (17) in
the form (21). Taking into account equations (42)
and (23), we obtain

a=Ww+f

. (43)
Q = |wl*|(r/a)'*Q + (¢/r)'*R

Here, subscripts . are omitted, and the following
denotations are used

q¢=(Qu,v), r=(Rv,v) (44)
Let us find the control w(¢) which minimizes the
functional

7O = [g(T)]"? + (a(T), v) —|—b/|w|2dt (45)

for system (43). This functional includes the sup-
port function for the approximating ellipsoid (see
(13)) and the quadratic integral control cost. Here,
T is a fixed terminal time instant, and & is a pos-
itive constant. Thus, we seek for the control w(?)
which is, in a certain sense, optimal for the whole
ensemble of possible trajectories of system (41).

According to (43) and (44), we have
§ = 2wl*(gr)'/? (46)

Instead of matrix @, it 1s sufficient to consider
a scalar variable ¢. Thus, our optimal control
problem is considerably simplified. We introduce
the vector and scalar adjoint variables ¢ and ¢
corresponding to a and ¢, respectively, and write
down the Hamiltonian

H= (4, Ww+ f) +2lw|*(qr)""?p — bJw|* (47)

According to the maximum principle
w=WTy / {21) — A(gr) %y (48)

The adjoint equations and transversality condi-
tions for our problem are

b=0, ¢=—|w(r/q)*

(49)
WT) = =0, (T) = ~[a(T)]7/? /2

It follows from equations (49) and (46) that ¢
and qe? are constant. Taking into account the
boundary conditions (49), we obtain

Wt) =—v, plt)=—¢"*/2 (50)
Inserting formulas (50) into (48), we obtain
w(t) = =W () /26 +2(R(t)v, )/

Thus, for the specific case considered above, we
obtain the control in an explicit form. Substitut-
ing it into equations (43), one can easily find state
variables.

9. CONCLUSION

New criterion for optimal ellipsoids approximating
reachable sets which has certain advantages is
proposed. It i1s equal to the projection of the
ellipsoid onto the given direction. The properties
of the approximating ellipsoids are investigated. A
specific optimal control problem for the ensemble
of trajectories is considered.
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