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Abstract: This paper is devoted to the study of the long term dynamic behavior of exploited
natural resources. The focus is on the case of protected resources, namely resources that can
not be harvested when they are too scarce. The model is a controlled system composed of
a nonlinear second order SISO system and an on-off feedback controller. The analysis is
performed through the numerical continuation of the sliding bifurcations of the system. The
results show that for suitable combinations of the parameters the system can have multiple
attractors. Copyright © 2002 IFAC
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1. INTRODUCTION

This paper is devoted to the study of the dynamics
of exploited natural resources. The most traditional
approach in this sector is to introduce notions like
harvesting effort (the control variable), cost of effort,
benefits of harvest, risk of extinction and then for-
mulate and solve an optimal control problem (Clark,
1976). However, the optimal solution can hardly be
implemented in practice for organizational and in-
stitutional difficulties. Thus, the real management of
natural resources is much more often performed by
fixing quotas, costs of licenses, subsidies, lengths of
fishing/hunting seasons, or similar variables. In other
words, the structure of the controller is fixed and only
a few parameters are selected by the control Agency.

Very often, in order to avoid high risks of extinc-
tion of the exploited population, harvesting is for-
bidden when the population density drops below a
prescribed threshold, in the following denoted by α .
Such a rule is supported by conservation ecologists,
who a priori associate an infinite cost to the loss of
any population and is economically justified whenever
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the maximization of the benefits is performed using
sufficiently low discount factors. The threshold intro-
duces a discontinuity, so that the controlled system is,
in the end, a discontinuous piecewise smooth system
(also called Filippov system) in which sliding motions
(Utkin, 1977; Filippov, 1988) are possible on the man-
ifold separating the region where harvesting is allowed
from that where it is forbidden. In the particular case
examined in this paper, the controlled system is simply
a second order SISO nonlinear system with an on-
off feedback controller specified by two parameters:
the threshold α and the harvesting effort E. Thus,
when sliding, the density of the exploited population
remains practically constant at the threshold value α
and the harvesting effort switches at high frequency
between 0 and E.

The aim of the paper is to determine all possible
asymptotic modes of behavior of the system for all
possible combinations of the two control parameters α
and E. Technically, this is accomplished by perform-
ing the bifurcation analysis of the system with respect
to α and E. Of course, some (actually many) bifur-
cations, called sliding bifurcations, critically involve
some structural change in the sliding motion of the
system. Since the sliding bifurcations are many, the
analysis should be performed through their system-
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atic detection and numerical continuation. However,
this is not possible because the complete catalogue
of sliding bifurcations is not yet available even in the
case of planar systems where only local bifurcations
have been considered until now (Bautin and Leon-
tovich, 1976; Filippov, 1988). Actually, the existing
contributions on global sliding bifurcations refer ei-
ther to specific bifurcations (Bernardo di et al., 1998)
or to particular classes of systems, like mechanical
systems of the stick-slip type (Galvanetto et al., 1995;
Kunze and Küpper, 1997; Leine, 2000; Dankowitz and
Nordmark, 2000) and linear systems with relay feed-
back controllers (Bernardo di et al., 2001; Kowalczyk
and di Bernardo, 2001). Without developing here the
complete theory of sliding bifurcations of Filippov
systems, we show through the example of resource
exploitation how one can proceed in continuing these
bifurcations through the use of their associated defin-
ing equations (Kuznetsov, 1998).

The paper is organized as follows. First, we describe
the model and interpret it as a relay control system and
then we study its bifurcations. For this, we start with
the case in which the population is not protected (i.e.
α � 0): this is simple (and already known) because
the system is continuous for α � 0. Then, we consider
the case in which the system is protected (α

�� 0)
and, interpreting bifurcations as collisions of invariant
sets (including sliding segments), we determine all
bifurcations with respect to α for a given value of
E. Finally, after identifying their defining equations,
we continue these bifurcations with respect to α and
E, thus producing the entire bifurcation diagram. A
short discussion of our findings and of some possible
extensions close the paper.

2. THE MODEL

We consider a community composed of two popu-
lations, namely prey and predator with densities x1
and x2, respectively, where the predator population
is harvested only when abundant, i.e. when x2 � α .
The dynamics of the two populations are described
by the Rosenzweig-MacArthur prey-predator model
which is the most frequently used model in theoret-
ical as well as in applied ecology (Rosenzweig and
MacArthur, 1963). In that model the prey popula-
tion grows logistically in the absence of predator and
each predator transforms the harvested prey into new
bornes. More precisely, the model for x2 � α is the
following

ẋ1 � r x1

�
1 � x1

K � � ax1

b � x1
x2 (1)

ẋ2 � e
ax1

b � x1
x2 � d x2 (2)

where r and K are natural per-capita growth rate and
carrying capacity of the prey, a is the maximum per-
capita predation rate, b is the half-saturation constant
(i.e. the prey density at which the predation rate is half
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Fig. 1. The structure of the controlled system.

maximum), e is the efficiency, namely a conversion
factor specifying the number of predator new bornes
for each unit of predation, and d is per-capita natural
death rate of the predator.

When the predator population is abundant (x2 � α) an
extra mortality must be added to the second equation
in order to take exploitation into account. Assuming
that the resource is exploited at constant effort E, the
second state equation for x2 � α takes the form

ẋ2 � e
ax1

b � x1
x2 � d x2 � qE x2 (3)

where q is the catchability coefficient.

System (1-3) is composed of a nonlinear second order
SISO system described by

ẋ1 � r x1

�
1 � x1

K � � ax1

h � x1
x2

ẋ2 � e
ax1

b � x1
x2 � d x2 � ux2

y � x2

and of an algebraic relay system

u � qE
2 , 1 � sign - y � α .0/

as shown in Fig. 1.

For notational convenience, we define the regions

S1 �21 x : x2 � α 3 S2 �41 x : x2 � α 3
and we indicate by Σ the manifold separating the two
regions, i.e. Σ �41 x : x2 � α 3 . Thus, the state space is
the union of S1, S2, and Σ and the model equations are

ẋ � f 5 i 6 - x 7 α 7 E . x 8 Si 7 i � 1 7 2 (4)

where f 5 1 6 and f 5 2 6 are specified by eqs. (1,2) and
(1,3), respectively.

Since the first components of the vectors f 5 i 6 do not
depend upon α and E, the nontrivial zero-isocline
ẋ1 � 0 is the same in both regions Si and is given by the
parabola x2 � r 9 b � x1 : 9 1 � x1 ; K :�; a. By contrast,
the nontrivial zero-isoclines ẋ2 � 0 are different in
the two regions S1 and S2. More precisely, they are
vertical straight lines given by x1 � bd ; - ea � d . for
x 8 S1, and x1 � b - d � qE . ; - ea � d � qE . for x 8 S2,
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Fig. 2. Regions S1 and S2 separated by the manifold
Σ and the isoclines of system (4). Point P is a
pseudo-equilibrium. Parameter values are: r � 5,
K � 1, a � 2, b � 0 � 2, e � 0 � 8, d � 0 � 6, q � 1,
α � 0 � 45, E � 0 � 72.

as shown in Fig. 2 for the parameter values specified
in the caption.

Sliding occurs on the segment Σs delimited by the two
intersections T 5 1 6 and T 5 2 6 of Σ with the two zero-
isoclines ẋ2 � 0 (see Fig. 2). As first pointed out by
Filippov, these points, at which one of the two vectors
f 5 i 6 is tangent to Σ, are strategically important for
bifurcation analysis. Sliding motions on Σs obey the
smooth scalar differential equation

ẋ � g - x 7 α 7 E . x 8 Σs (5)

where g is the unique convex combination of
f 5 1 6 - x 7 α 7 E . and f 5 2 6 - x 7 α 7 E . parallel to Σs

(Filippov, 1988). Points P for which g - x 7 α 7 E . � 0,
are called pseudo-equilibria (Gatto et al., 1973) and
correspond to a stationary sliding solution. Pseudo-
equilibria are generically interior points of the sliding
segment Σs (as in Fig. 2), but for special combinations
of the parameters they can also collide with the bound-
ary points of the sliding segment.

3. THE CASE OF UNPROTECTED
POPULATIONS (α � 0)

If the harvested population is not protected when
scarce, i.e. if α � 0, the bifurcation analysis with
respect to E is easy, because the system is contin-
uous. The results are summarized in Fig. 3, where
the vertical isocline ẋ2 � 0 is drawn for five different
values E1 � E2 � ����� � E5 of the effort. The values
E2 and E4 are the critical values corresponding to
two different bifurcations. For E � E2 the vertical
isocline is on the left of the vertex of the parabola
and the analysis of the Jacobian matrix evaluated at
the positive equilibrium (point 1 of Fig. 3) reveals
that such an equilibrium is unstable. For obvious topo-
logical reasons (Poincaré theory) such an equilibrium
must be surrounded by at least one limit cycle. More
detailed analyses show that the limit cycle is unique
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Fig. 3. Isoclines of system (4) in the case α � 0
(unprotected predator population). The vertical
isoclines ẋ2 � 0 are drawn for increasing values
of harvesting effort: E1 � 0 � 2, E2 � 0 � 47, E3 �
0 � 64, E4 � 0 � 73, E5 � 0 � 78. Other parameters as
in Fig. 2.

(Cheng, 1981) and that it shrinks for E approaching E2
and, finally, disappears through a supercritical Hopf
bifurcation for E � E2 (Kuznetsov, 1998). The same
analysis, performed for E2 � E � E4, shows that the
positive equilibrium (point 3 of Fig. 3) is globally sta-
ble in the first quadrant. Finally, for E � E4 the equi-
librium 3 collides with the trivial equilibrium - K 7 0 .
(transcritical bifurcation), and for E � E4 the global
attractor is the trivial equilibrium - K 7 0 . characterized
by the absence of the predator population. The bi-
furcation values E2 and E4 can be easily computed
and are given by E2 � , ea - K � b . ; - K � b . � d / ; q and
E4 � , eaK ; - K � b .%� d / ; q.

Thus, in conclusion, if α � 0 there are two bifurca-
tions with respect to E: a Hopf bifurcation for E � E2
and a transcritical bifurcation for E � E4. Moreover,
for any value of the effort, the system has a unique
global attractor in the positive quadrant: a cycle for
E � E2, a positive equilibrium for E2 � E � E4 and a
trivial equilibrium for E � E4.

4. THE CASE OF PROTECTED
POPULATIONS (α

�� 0)

As already said, the analysis of the bifurcations with
respect to E and α is performed in two steps. First, we
fix E at a specified value and we look for bifurcations
with respect to α . In the present case we will identify
four bifurcations, all involving structural changes of
the sliding motion. Then, we determine the so-called
defining equations (Kuznetsov, 1998) of these sliding
bifurcations and we use them to produce numerically,
through continuation techniques, the corresponding
bifurcation curves in the space - α 7 E . . This allows one
to detect all qualitatively different modes of behavior
of the system. Each mode of behavior is described
by a state portrait, which is characterized by a set of
specific equilibria, cycles, pseudo-equilibria, sliding
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Fig. 4. The basic elements (see legend) of all the state portraits identified through bifurcation analysis.

cycles, and sliding segments. All these sets of the state
portraits are collected in Fig. 4. The first five of them
are identified in the first step of the analysis while the
remaining ones are obtained in the second step.

4.1 First step: bifurcation analysis with respect to α
for a given E

In this phase the effort E is frozen at a particular
value E

�
(equal to 0 � 8 in our case) and α is varied

in the range of interest (see dotted line in Fig. 5).
For small α the state portrait is characterized by a
positive equilibrium in S2 and by the sliding segment
Σs, as shown in Fig. 4.1. Then, α is varied step by
step and the system is simulated for increasing values
of α in order to check if the state portrait remains
topologically equivalent. If for two subsequent values
of α , say α

�
and α

� �
, the state portraits are not topo-

logically equivalent, other simulations are performed
in the interval , α � 7 α � � / in order to detect the first bifur-
cation α1 with satisfactory approximation. Obviously,
α
� � α1 � α

� �
. Then, the process is repeated starting

from α
� �
, until the second bifurcation α2 is found, and

so on. In the present case four bifurcations are de-
tected for α1 � 0 � 89, α2 � 1 � 08, α3 � 1 � 23, α4 � 2 � 18.
The state portraits corresponding to the open intervals- 0 7 α1 . , - α1 7 α2 . ,. . . , - α4 7 ∞ . are qualitatively sketched
in Fig. 4.1-4.5.

The bifurcation α1 is called boundary node because
the transition from Fig. 4.1 to Fig. 4.2 is characterized
by the collision of a node in S2 with the boundary
point T 5 2 6 of the sliding segment Σs. Similarly, the

second bifurcation α2 is called boundary focus, be-
cause the transition from Fig. 4.3 to Fig. 4.2 involves
the collision of a focus in S1 with the sliding seg-
ment Σs. Notice that the boundary focus bifurcation
is characterized by the appearance/disappearance of
three invariant sets: a pseudo-saddle, a focus and a
sliding cycle, which collide for α � α2. The third
bifurcation α3 (transition from Fig. 4.3 to Fig. 4.4) is a
pseudo-saddle-node bifurcation, namely the collision
(and disappearance) of a pseudo-saddle with a pseudo-
node. Finally, the fourth bifurcation α4, called touch-
ing bifurcation, occurs when the limit cycle located in
S1 (see Fig. 4.5) touches the sliding segment Σs at T 5 1 6 .
Notice that the first three bifurcations are local, while
the fourth one is global.

4.2 Second step: continuation with respect to E and α

With the aim of obtaining the entire bifurcation dia-
gram, the four bifurcations - αi 7 E � . , i � 1 7������ 7 4 can
be numerically continued in the space - α 7 E . . For this
one must first determine the defining equations of each
bifurcation, and then use these equations to find all
pairs - α 7 E . giving rise to the same bifurcation. For
example, the boundary node bifurcation (collision of
an equilibrium with Σs at T 5 2 6 ) is simply identified by
the following equations�

f 5 2 6 - x 7 α 7 E . � 0
x2 � α (6)

These are three equations in four unknowns- α 7 E 7 x1 7 x2 . . A particular solution - α � α1 7 E �
E
� 7 x1 � b - d � E

� . ; - ea � d � E
� .�7 x2 � α1 . has been



obtained in the first step, when detecting the first bi-
furcation - α1 7 E � . . Hence, this solution can be used as
initial condition of a continuation algorithm (Doedel
and Kernevez, 1986; Doedel et al., 1997) that pro-
duces automatically the entire boundary node bifur-
cation curve.

One can proceed in a similar way for the second and
third bifurcations which are local bifurcations involv-
ing collisions of equilibria, boundary points, pseudo-
equilibria and shrinking sliding cycles. By contrast,
the case of the touching bifurcation - α4 7 E � . is rather
different because this bifurcation is a global one. The
defining equations of the touching bifurcation say that
the trajectory starting from point T 5 1 6 develops en-
tirely in S1 and comes back to T 5 1 6 in finite time
(τ). Thus, the defining equations involve differential
equations and take the form of the following two-
boundary-value problem���� ���

ẋ � f 5 1 6 - x 7 α 7 E .
x - τ . � x - 0 .
x2 - 0 . � α
x1 - 0 . � bd ; - ea � d . (7)

Since a solution to this two-boundary-value prob-
lem has been obtained when detecting the bifurcation- α4 7 E � . , one can produce all touching bifurcations
using standard continuation techniques (Doedel and
Kernevez, 1986; Doedel et al., 1997).

4.3 Results

The result of all these continuations (and the analysis
of some codimension-2 bifurcations) is the bifurca-
tion diagram shown in Fig. 5, containing ten different
bifurcations (four local and six global) and fourteen
regions 1,. . . , 14 (see Fig. 4 for the corresponding state
portraits). This means that after detecting four bifurca-
tions in the first step, six other bifurcations have been
found when performing the second step. The corre-
sponding bifurcation curves originate at codimension-
2 bifurcation points in the space - α 7 E . where vari-
ous bifurcation curves merge. The discovery of these
strategically important codimension-2 points is abso-
lutely not easy and is not described in this paper.

One important feature to remark is that for suitable
values of the control parameters (see regions 3, 6,
8, and 9 in Fig. 5 and corresponding state portraits
in Fig. 4) the system has two alternative attractors,
which can even be two sliding cycles (see region 9).
This was rather unexpected since the Rosenzweig-
MacArthur model has a unique attractor when the
exploited resource is not protected (see Sect. 3).

5. CONCLUDING REMARKS

We have studied in this paper the asymptotic behavior
of a prey-predator community in which the predator
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Fig. 5. Bifurcation diagram (see Fig. 4 for the corre-
sponding state portraits). The marked points are
codimension-2 bifurcation points.

population is harvested at constant effort E whenever
its density is above a specified threshold α . This model
fits pretty well the common practice of the manage-
ment of some renewable resources (e.g. whales feed-
ing on krill, ungulates feeding on plants, tuna feeding
on sardines). The analysis has been carried out by per-
forming a bifurcation analysis with respect to the two
parameters α and E. One result (not even pointed out
in the text) was expected: sufficiently high thresholds
guarantee that the attractors are strictly positive (i.e.
the exploited population survives). However, another
result was unexpected: for suitable combinations of
the control parameters there are multiple attractors.
Thus, the conclusion is that one can, indeed, protect
the exploited population from extinction but with the
risk of generating a system with ambiguous long term
behavior.

There are other simple prototype models that fit the
common practice of the management of other renew-
able resources. For example, sometimes exploitation
is not restricted but support is given to the preda-
tor population whenever it drops below the threshold
value α by stocking young predators into the system
or by enriching the habitat of the prey. Both these
cases could be studied through a sliding bifurcation
analysis similar to that performed in this paper.

This study has proved that the number of bifurca-
tions involved in these simple models is surprisingly
high. Although we have shown how one can proceed
to obtain the entire bifurcation diagram, it is obvi-
ous that the knowledge of the complete catalogue of
codimension-one sliding bifurcations in planar Filip-
pov systems would be helpful. Extending this cata-
logue to codimension-two bifurcations and/or to three
dimensional Filippov systems would also be of great
value.
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