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Abstract: The transmission matrix, introduced by Friedland in 1957, can be used to charac-
terize a linear, time invariant system having an emprically-determined impulse response. The
Wiener-Kalman filter can be determined by Cholesky factorization of a covariance matrix
formed from the transmission matrix. An analogous result is given for linear, quadratic
control. The method is illustrated by several examples.
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1. INTRODUCTION

State-space methods for control and estimation have
been enormously successful for many years. But these
methods rely upon the availability of state-space mod-
els (differential or difference equations) to character-
ize the dynamics of the processes of interest. It often
happens that the requisite model is not readily avail-
able, but it is possible to determine the characteristics
of the process of interest empirically, by applying a
test input and recording the response.

When a state-space model is not available, one ap-
proach is to use a model-identification technique to fit
a state-space model to the empirical data. The litera-
ture abounds with such techniques and many practical
algorithms are readily available for application.

There are situations, however, in which the available
identification techniques are either cumbersome or fail
to produce satisfactory results. Moreover, one might
ask why it should be necessary to pay the price of
using a sophisticated identification method in order to
use a state-space method for the design of a control
system or a filter. Isn’t it possible to use the empirical
data directly, without first having to establish a state-
space model?

A method for dealing with linear systems directly in
terms of their empirically measured impulse response
data, without the necessity of first having to establish
state-space models, has been available for over forty
years (Friedland, 1957). Owing perhaps to computa-
tional limitations of the rudimentary digital computers
of that era, however, this method was rarely exploited
outside the field of process control where it is known
as “Dynamic Matrix Control” (The terminology is at-
tributed to Cutler and Ramaker (Ogunnaike, 1983)).
State-space methods seemed obviously more appro-
priate in most applications. The enormous increase in
computing power (speed and memory) since that era
makes it timely to revisit the methods and results of
that era.

2. REPRESENTATION OF LINEAR SYSTEMS
BY TRANSMISSION MATRICES

A linear discrete-time systemH can be represented by
the superposition summation

y(n) = ∑
k

h(n,k)u(k) (1)

where u(n) and y(n) represent the value at thenth
sampling instant of the input and output signals, re-
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spectively, andh(n,k) is the “unit (impulse) response”
of H.

Assuming that signals start an = 0 allows an alter-
native representation (Friedland, 1957) of the input-
output relation forH 1 :

y = Hu (2)

where signals are represented as vectors, e.g.,

x = [x(0),x(1), . . . ,x(n), . . .]′

and linear systems are represented by “transition ma-
trices”, e.g.

H =


h(0,0) h(0,1) h(0,2) · · ·
h(1,0) h(1,1) h(1,2) · · ·
h(2,0) h(2,1) h(2,2) · · ·

...
...

...


In a causal system,h(n,k) = 0 for k < n, the transition
matrix for a causal system islower triangular, e.g.

H =


h(0,0) 0 0 · · ·
h(1,0) h(1,1) 0 · · ·
h(2,0) h(2,1) h(2,2) · · ·

...
...

...


Finally, if H is time-invariant,h(n,k) = h(n− k) and
hence each column ofH is the same as the previous
column, but pushed down one element, e.g.

H =


h(0) 0 0 · · ·
h(1) h(0) 0 · · ·
h(2) h(1) h(0) · · ·

...
...

...

 (3)

For a general, a so-calledinfinite impulse response
– IIR system, the transmission matrix is of infinite
dimension. In afinite impulse response — FIRthe
impulse response terminates after a fixed numberN
of terms.

Since our concern in this paper is with empirical data,
we assume that we are dealing with FIR systems.
Moreover, implicit in the assumption that the impulse
response can be determined empirically is the fact that
the system is time invariant and thus has a transmis-
sion matrix of the form given by (3).

3. WIENER-KALMAN FILTERING

In terms of transmission matrices, the Kalman filtering
problem can be stated as follows:

Consider a systemH with transmission matrixH.
Suppose that the inputu is a white noise sequence

1 The sans-serif typeface is used to designate signals and transmis-
sion matrices in this formulation

with varianceσ2
u . To the outputy = Hu is added

another white noise sequencev with varianceσ2
v The

covariance matrix variance of the sumz = y+v is

Pz = σ
2
uHH′ +σ

2
v I (4)

The goal is to obtain an estimate ˆy of y by means of a
causallinear filter processingz, i.e.,

ŷ = Kz = K(Hu+v)

such that the “residual”

r = y− ŷ = (I−K)Hu−Kv (5)

has the minimum covariance matrix.

A simple calculation gives the covariance matrix of
the residual:

Pr = σ
2
u(I−K)HH′(I−K)′ +σ

2
v KK′ (6)

There is obviously no loss in generality in assuming
thatσ2

u = 1 and replacingσ2
v by

ρ =
σ2

v

σ2
u

the “noise-to-signal” ratio.

Cursory examination of (6) reveals that forρ = 0
the minimization is achieved withK = I, i.e., simply
accepting the noisy output as the best estimate of
the noise-free output, because there is no observation
noise.

If not for the requirement thatK be causal, finding
the transmission matrixK that minimizesPr is a
straigtforward calculus problem.

The causality requirement, however, turns the problem
into the discrete-time version of the famous Wiener-
Hopf integral equation which was elegantly solved in
the frequency domain by Bode and Shannon (1950)
using the “spectral shaping method” in which the
observed signal is first transformed to white noise and
then the resulting white noise is filtered to obtain the
desired estimate.

Friedland (1958) showed that the transmission matrix
analog of Bode-Shannon spectral shaping isCholesky
factorizationof the analogous spectral density matrix
Pz given above. In particular, let the Cholesky factor-
ization ofPz be given by

Pz = CC′ (7)

whereC is lower triangular andC′ is upper triangular.
SinceHH′ ≥ 0 , the presence ofσ2

u I in (4) ensures that
Pz is positive definite, henceC−1 exists. It is shown
in Friedland (1958) that the transmission matrix of the
desired filter is given by

K = [HH′(C′)−1]RC−1 (8)



where the symbol

[M]R denotes the “realizable part of” (9)

the matrixM, obtained fromM by deleting all ele-
ments above its principal diagonal.

The implementation of the algorithm described above
at the time it was developed (before the digital com-
puter era) was impractical for large values ofN owing
the the amount of calculation required. Nowadays,
however, the calculation is all but trivial, even forN
of several hundred. A Matlab m-file that implements
the algorithm is given in the Appendix.
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Fig. 1.The least-squares filter in a feedback configu-
ration.

It is noted that the result is the transmission matrix
of the closed-loop filter. If a feedback implementation
as shown in Figure 1, in which the residualr = y− ŷ
is explicitly determined, is desired, the forward loop
transmission matrix is given by

T = K(I−K)−1 (10)

4. FEEDBACK CONTROL

In the Wiener filtering problem the main goal is to de-
termine the transmission matrix of the filter. Kalman’s
state space formulation provides a means, but not
the only means to that goal. In the feedback control
problem, however, the goal isnot to determine the
transmission matrix of the closed-loop system (the
analog of the Wiener filter) but rather to determine the
compensatorD in the closed-loop system that includes
the actual process (not simply a mathematical model
of the process, as in the case of the Kalman filter) as
shown in Figure 2. Determination of the compensator
by solution of a quadratic optimization problem is but
one of many methods that can be employed.

In principle one could specify the desired closed-
loop transmission matrixK and determine the desired
forward loop transmission matrixT using (10), finally,
when H is non-singular (i.e.,h(0) 6= 0 implying no
process delay) solving forD

D = H−1T

If H is singular, the “Smith predictor” (Smith, 1958)
or another technique for dealing with delays could be
used.

In the state-space formulation the linear, quadratic
(LQ) control problem and the least-squares estimation
problem are “dual”. The transmission matrix formula-
tion of the optimum control problem is similar to the
filtering problem, but is not its exact dual. The most
obvious difference is that the goal of the LQ control
problem is to return thestate xof the plant to zero
rapidly, whereas the state is nowhere present in the
transmission matrix formulation and the goal is rather
for the closed-loop system to “track” an inputyd (from
a specified class).
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Fig. 2.Feedback control system

The classical control problem is to minimize the sum
of quadratic forms in the system error

e(n) = yd(n)−y(n)

and the control inputu(n). Thus a performance crite-
rion

V =
N

∑
k=0

e2(k)+q2u2(k) (11)

is defined.

In terms of transmission matrices

e = yd −Hu (12)

so (10) can be written

V = (y′d −u′H′)(yd −Hu)+q2u′u (13)

Suppose a linear control law is used. Then

u = Gyd (14)

andy = Hu = HGyd and hence the closed-loop trans-
mission matrix is

K = HG (15)

Also (13) becomes

V = y′dMyd (16)

where

M = (I−G′H′)(I−HG)+q2G′G (17)

From (17) it is apparent that as the control weighting
q2 approaches zeroK = HG approaches the identity



matrix, i.e., the best closed-loop system simply repro-
duces the desired input.

Compare (17) to (6) and notice that they are of similar
form. The minimization with respect to the unknown
matrix tranmission matrixG can be accomplished by
the same method as was used to obtain (8).

For the control problem there are two cases to con-
sider:

Case 1: Non-singularH. If the system has no “pure
delay” (h(0) 6= 0) thenH is nonsingular and the solu-
tion G to the optimization problem defined by (16) is
given by

G = L−1[(HL−1)′]R

whereL is the causal Cholesky factor ofH′H+q2I, i.e,

L′L = H′H+q2I

and, hence the “optimum” closed-loop transmission
matrix is given by

K = HG = HL−1[(HL−1)′]R (18)

and the forward loop transmission

T = HD = K(I−K)−1

Thus the compensator transmission matrix is

D = H−1K(I−K)−1 (19)

Case 2: GeneralH . If H is singular, however, the
above solution method is not valid for two reasons:
first, the compensator cannot be realized using (19).
And, more subtly,HL is a causal (lower triangular)
matrix; soHL′ is an upper triangular matrix. Its re-
alizable part is the simply the matrix consisting of
the diagonal elements ofHL′, which are all zero if
h(0) is zero. So (19) gives the product of an infinite
matrix with a zero matrix. One work-around is to
put small but non-zero number in the place ofh(0).
Another work-around is to change the quadratic form
to be minimized and thereby change the matrix to
be minimized. In particular, suppose the matrix to be
minimized is

Q = H′MH (20)

= (I−P)′H′H(I−P)+q2P′P (21)

where

P = GH (22)

Note thatGH 6= HG henceP 6= T, but P can be used
to obtain D as shown below. The solution to the
optimization problem defined by (21) is

G = L−1[L−1H′H]R (23)

5. EXAMPLES

The forgoing theory is intended for use with a system
having an empirically measured impulse of perhaps
comprising several hundred terms. For illustrative pur-
poses, however, we consider an example of a system
having an FIR with only a few non-zero terms, namely

h = [0 3 2 1 0 0 0 0 0· · ·]

(The extra zeros inH permit closer convergence to the
steady-state solution as the following result shows.)

Using the appended m-file, withρ = 1, the transmis-
sion matrix of the filter is found to be

K =
0 0 0 0 0 0 0
0 0.9000 0 0 0 0 0
0 0.0577 0.9038 0 0 0 0
0 -0.0055 0.0573 0.9039 0 0 0
0 -0.0133 -0.0065 0.0573 0.9041 0 0
0 0.0095 -0.0126 -0.0064 0.0571 0.9042 0
0 -0.0018 0.0094 -0.0126 -0.0064 0.0570 0.9042

A state-space model

xn+1 = Φxn +Γun

yn = Cxn

for this system has

Φ =

 0 1 0
0 0 1
0 0 0

 , Γ =

 0
0
1

 , C =
[

1 2 3
]

The Kalman filter and the linear, quadratic control can
be designed by state-space methods. In particular, with
σ2

u = σ2
v the steady state Kalman filter, found with the

aid of Matlab, has the transfer function

K(z) =
0.9042z2 +0.5953z+0.2874

z2 +0.5953z+0.2874

to which corresponds the impulse response

k=
[0.9042,0.0570,-0.0064,-0.0126,0.0093,-0.0019,...]

It is observed that this impulse response is identical
to the last row of the transmission matrixK as deter-
mined above by the method of this paper.

In view of the issue raised above in determining the
compensator when there is a delay between the input
and the output, we assume that the observed impulse
response is given by

h = [3 2 1 0 0 0 0 0· · ·]

makingh(0) 6= 0.

For a control weighting ofq2 = 1 the closed-loop
transfer function calculated by the formula of Case 1
is found to be
K =



Columns 1 through 6
0.6429 0 0 0 0 0
0.1236 0.7875 0 0 0 0

-0.0390 0.1007 0.8295 0 0 0
0.0180 -0.0464 0.0907 0.8425 0 0

-0.0095 0.0245 -0.0479 0.0873 0.8467 0
0.0052 -0.0136 0.0265 -0.0483 0.0862 0.8480

-0.0029 0.0076 -0.0149 0.0271 -0.0484 0.0858
0.0017 -0.0043 0.0084 -0.0153 0.0273 -0.0484

-0.0009 0.0024 -0.0047 0.0087 -0.0154 0.0274
0.0005 -0.0014 0.0027 -0.0049 0.0087 -0.0155

-0.0003 0.0008 -0.0015 0.0028 -0.0049 0.0088
-0.0001 0.0002 -0.0004 0.0008 -0.0014 0.0025

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.8484 0 0 0 0 0
0.0857 0.8485 0 0 0 0

-0.0484 0.0857 0.8486 0 0 0
0.0274 -0.0485 0.0857 0.8486 0 0

-0.0155 0.0274 -0.0485 0.0856 0.8486 0
-0.0044 0.0077 -0.0136 0.0241 -0.0426 1.3625

The transmission matrix of the corresponding com-
pensator, using (19) is found to be
D =

Columns 1 through 6
0.6000 0 0 0 0 0
0.1430 1.2353 0 0 0 0
0.0119 0.1027 1.6216 0 0 0
0.0003 0.0028 0.0450 1.7836 0 0
0.0000 0.0000 0.0004 0.0161 1.8407 0
0.0000 0.0000 0.0000 0.0000 0.0053 1.8595
0.0000 0.0000 0.0000 0.0000 0.0000 0.0017
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000
0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1.8656 0 0 0 0 0
0.0006 1.8676 0 0 0 0
0.0000 0.0002 1.8682 0 0 0
0.0000 0.0000 0.0001 1.8684 0 0
0.0000 0.0000 0.0000 0.0000 1.8685 0

-0.0000 -0.0000 -0.0000 -0.0000 -0.9870 -1.2529

From the middle rows ofD it is seen that the compen-
sator for this design is essentially nothing more than a
constant gain of 1.868.

For the design method of Case 2, the closed-loop
transmission matrix, calculated by first determiningP
and then determiningK = HPH−1, and using the same
control weighting, is determined to be
K =

Columns 1 through 6
0.7253 0 0 0 0 0
0.0947 0.8546 0 0 0 0

-0.0228 0.0690 0.8900 0 0 0
0.0086 -0.0289 0.0585 0.9007 0 0

-0.0041 0.0146 -0.0299 0.0550 0.9041 0
0.0022 -0.0079 0.0163 -0.0301 0.0539 0.9052

-0.0012 0.0044 -0.0091 0.0168 -0.0302 0.0535
0.0007 -0.0025 0.0051 -0.0095 0.0170 -0.0302

-0.0004 0.0014 -0.0029 0.0054 -0.0096 0.0170
0.0002 -0.0008 0.0016 -0.0030 0.0054 -0.0096

-0.0016 0.0027 -0.0043 0.0067 -0.0106 0.0167
-0.0003 0.0005 -0.0008 0.0013 -0.0021 0.0035

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.9055 0 0 0 0 0
0.0534 0.9057 0 0 0 0

-0.0302 0.0534 0.9057 0 0 0
0.0171 -0.0302 0.0533 0.9057 0 0

-0.0265 0.0424 -0.0682 0.1103 0.8202 0
-0.0056 0.0091 -0.0150 0.0248 -0.0412 1.3625

Fig. 3.Step responses of example designs.

and the transmission matrix of the corresponding com-
pensator is
D =

Columns 1 through 6
0.8800 0 0 0 0 0
0.2041 1.9595 0 0 0 0
0.1077 0.1304 2.6958 0 0 0

-0.0532 0.0926 -0.0117 3.0244 0 0
0.0387 -0.0578 0.0886 -0.0896 3.1433 0

-0.0263 0.0395 -0.0592 0.0890 -0.1195 3.1829
0.0177 -0.0265 0.0397 -0.0596 0.0894 -0.1297

-0.0118 0.0177 -0.0266 0.0398 -0.0597 0.0896
0.0079 -0.0118 0.0177 -0.0266 0.0399 -0.0598

-0.0053 0.0079 -0.0118 0.0177 -0.0266 0.0399
-0.0009 0.0014 -0.0021 0.0031 -0.0046 0.0069

0.0005 -0.0007 0.0011 -0.0016 0.0024 -0.0037

Columns 7 through 12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3.1958 0 0 0 0 0
-0.1330 3.1999 0 0 0 0

0.0897 -0.1341 3.2012 0 0 0
-0.0598 0.0897 -0.1344 3.2017 0 0
-0.0104 0.0156 -0.0234 0.0351 1.5208 0

0.0055 -0.0082 0.0124 -0.0186 -0.8033 -1.2529

From the middle rows of this matrix it is observed that
the impulse response of the compensator is approxi-
mated by

d = [3.20,−0.134, .0897]′

to which corresponds the transfer function

D(z) = 3.20−0.134z−1 +0.0897z−2

The step responses of the closed-loop system with the
two compensators are compared in Figure 3. Both de-
signs are satisfactory, although neither achieves zero
steady state error; this requirement has not been incor-
porated into the design specifications.

6. CONCLUSIONS

The transmission matrix method provides a frame-
work for design of filters and control algorithms di-
rectly from empirically-measured data of linear sys-
tems without the need for first developing state-
space models for the systems. The design algorithm,



based on Cholesky factorization, are readily appli-
cable to systems for which the measured impulse-
response sequence can contain many hundred terms,
since Cholesky factorization of large matrices is not an
overwhelming task. The obvious alternative technique
of using a state-space model in which the dimension
of the state space equals the number of terms in the
measured impulse response (as illustrated in the above
example) and then solving the associated matrix Ric-
cati equations would seem to be precluded by the sheer
size of the matrices involved in the calculation.

The method as presented here is applicable only to
single-input, single-output systems. Extension of the
method to “square” (i.e., equal number of inputs and
outputs) multi-input, multi-output systems appears
feasible. The elements of the system transmission ma-
trix H would be an array the elements of which are
square matrices of the same dimension as the number
of inputs and outputs. It is readily verified that the
Cholesky factorization extends to such arrays, pro-
vided the matrices on the diagonal are nonsingular.
Extension to non-square systems, however, appears
problematical.

State space methods, of course, do not have these lim-
itations. Moreover, the transmission-matrix method is
inherently limited to linear systems, whereas state-
space methods are not. Thus, when an appropri-
ate state-space model for the process can be devel-
oped, state-space continues to provide the methods of
choice.

APPENDIX

% function [K,T] = TDFIL(h,rho)
% Designs time-domain least-squares filter
% using Cholesky factorization.
%
% h=impulse response vector of plant
% rho="signal-to-noise" variance ratio
%
function [K,T] = TDFIL(h,rho)
%
% Form transmission matrix from impulse response
n=length(h);
H=zeros(n);
H(:,1)=h’;
%
for k=2:n

temp=H(:,k-1);
H(:,k)=[0;temp(1:n-1)];

end
%
Q=H*H’;
P=eye(n)+rho*Q;
% Cholesky factorization
M=chol(P)’;
B=inv(M);
%
C=Q*B’;
% Throw away part above upper triangle.
C=tril(C)
% Filter transmission matrix
K=C*B;

% Feedback form
T=K*inv(eye(n)-K);
% end of TDFIL
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