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Abstract: Drug development and therapy design are typical areas where relatively large
databases are often encountered. The processes of absorption, distribution, metabolism,
and elimination are very complex and patterns are hard to find. Therefore, methodology,
called data mining, is often needed to extract every possible information from the data.
Detailed analysis of the databases can shorten drug development time, reduce costs,
and provide more efficient dosage regimens. The aim of this article is to present and
discuss problems of data analysis in pharmacokinetic studies which are illustrated with
the example of a bioequivalence study database analysis. Suitable graphical representation
of data is a simple tool in data mining, however, combined with modelling and simulation
can become very effective.Copyright c©2002 IFAC
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1. INTRODUCTION

Drug development and therapy design are typical
areas where relatively large databases are often en-
countered. In drug design, samples from thousands
of people and animals can be collected in a single
study. In therapy design numbers are lower but still
can reach a few hundreds. The processes of absorp-
tion, distribution, metabolism, elimination, and their
effects that are of main interest in drug and therapy
design, are very complex and patterns in data are
hard to find. At the same time the costs involved in
pharmaceutical studies are very high, ethical as well
as financial, and their tendency is rising. Therefore,
methodology, called data mining (Gibaset al., 2001),
is often needed to extract every possible informa-
tion from the data. Data mining is a common label
for procedures of searching for complex patterns in
large databases. Their goal is to transform the data
into transparent information. The aim of this article
is to present and discuss problems of data analysis
in pharmacokinetic studies which are illustrated by
dynamic analysis of pharmacokinetic data, collected
in bioequivalence study. Bioequivalence studies are

important part of generic drug design. Generic drug
is a drug with already known substance and original
formulation of carrier. Bioequivalence studies are de-
signed to show equivalence in pharmacokinetic prop-
erties of original and generic drug. Pharmacokinet-
ics researches processes of absorption, distribution,
metabolism, and elimination of drugs and represents
unavoidable phase in the process of drug development
and therapy design. From measured concentrations of
drugs in body fluids, pharmacokinetics extracts in-
formation on fate of the drug in species’ body. Large
“in vitro” and “in vivo” studies are the source of
pharmacokinetic studies. Analysis with modelling and
simulation offers possibility of substantial rational-
isation of costs in problematic in general, expensive,
and time consuming measurements as well as advant-
ages in the processes of drug formulations develop-
ment and dosing regimen design. Due to very rigorous
requirements, pharmacokinetic models are becoming
ever more complex, including structural complexity
as well as time-variability and non-linearity. Artificial
intelligence and expert knowledge inclusion are also
becoming more and more important in pharmacokin-
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etical modelling and simulation. Verified and validated
models can be used, according to the modelling aim,
for identification of mechanisms important to drug
activities in organisms and for improvements of drug
formulations, such as specific dissolution profiles, etc..
Due to the models’ predictive power and ability to pre-
dict unmeasurable quantities, they enable simplified
design of general and individual therapies.

2. DATA MINING IN PHARMACOKINETICS

The first step in analysis of pharmacokinetic proper-
ties of the drug in drug and therapy design is to repres-
ent the data graphically. Usually time vs. concentra-
tion plots are used. Next, a model, describing the dy-
namics of the drug in a body, is often composed. The
model, from data mining point of view, is a transform-
ation from measured data space into parameter space.
This transformation reduces the dimension of space,
making the database more transparent. If measured
profiles of drug dynamics suggest relatively simple,
mostly linear dynamics, and if modelling aim does
not include study of mechanisms, so called population
kinetics is near-optimal approach. Methods of popula-
tion kinetics use parametric and structural identifica-
tion of a model, providing values of parameters as well
as their distributions as results (Jelliffeet al., 2000).
However, they are limited by complexity of model
structure and non-linearities (Schumitzky, 1991) and
are therefore mainly used for therapy design, where
good predictions are necessary and the models must
therefore be simpler as in drug design.

Complex transport systems of drugs, precise measure-
ment methods, and complex interaction between drug
and organism are implying the use of ever more com-
plex models. The problem of large non-linear models
is that the reduction of initial problem space dimen-
sion is not sufficient to produce transparent informa-
tion on the system. Therefore, data mining methods
must be used again, first to validate the model, and
then to analyse the new database, consisting of model
parameters and time courses of drug concentration
in different measurable and unmeasurable regions of
an organism. Model validation that is integral part
of parametric identification methods, being one of
their strongest points, must be performed separately
from parameter estimation for large models. Since
model parameters are mostly estimated by optimisa-
tion methods, there is no guarantee that optimal set
of parameter values can be found nor that it exists,
especially, since the dimension of parameter space is
high (>15). The structure of the model must comply
with approximate structure of organism. Then, pat-
terns must be found.
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Fig. 1. Concentration vs. time plot.

2.1 Graphical representations in data mining

As mentioned above, database should be mapped into
space where research of hypotheses, given by the aim
of the work, is as simplified as possible. Different
types of graphical representations offer the simplest
possibilities for data mining in pharmacokinetic stud-
ies. As an example, the bioequivalence study will be
presented, to illustrate necessity of data mining in
large and complex databases.

3. MODELLING

The aim of the study was to characterise two sim-
ilar drug formulations in fed and fasted conditions.
Three studies were performed with slightly differ-
ent tablet formulations. There were 144 measured
profiles, available for analysis. As mentioned above,
measured data is first represented graphically (Fig. 1)
to get some information on system dynamics. Next,
a model (Cellier, 1991; Matkoet al., 1992; God-
frey, 1983; Wagner, 1993) is composed from literature
description of organism physiology and data analysis
(Fig. 2). Model was fitted to the measured data and
structurally changed to meet the specifications and
remain as simple as possible. The absorption from
gastro-intestinal tract was modelled with time-variable
fuzzy sub-model since it is unpredictably variable, as
substance is being transported by peristaltics. The pre-
systemic metabolism of the drug in stomach was also
modelled with time-variable fuzzy sub-model, since
pH levels, governing the metabolism of the drug, can
also erraticly change with time. To estimate the model
parameters curve fitting procedure was used, where
parallel genetic algorithm was varying the parameter
values to simultaneously obtain best possible fit of
model output and measured data of parent drug and
metabolite plasma profiles. Model was able to mimic
the real plasma profiles (Fig. 3).

3.1 Model Validation

Model was composed according to known physiology
of an organism and was able to fit every measured
profile equally well. Parameter estimation procedure
was repeated 20 times for each individual with similar
visual quality of fit (Fig. 3) and acceptable parameter
value deviations (Fig. 4). No further attempts to valid-
ate the model were made at that time.
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Fig. 2. Model of drug dynamics in human body. Num-
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Fig. 3. Model responses (line) vs. measured data
(circles) (concentration vs. time plot).
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Fig. 4. Parameter values for one person after 20
repeated estimation procedures, on x-axis con-
sequent number of parameter is represented and
on y-axis the value of parameter with correspond-
ing deviation is shown.

4. MODEL ANALYSIS

To obtain information from data that model simula-
tions produced, several approaches are possible. When
studying population data, some statistical evaluation
of model parameters, quantities in compartments, and

cumulative quantities in compartments is necessary
to extract information that is relevant to the tested
population. Means, medians, standard deviations, etc.,
however, do not always do the job, since the popu-
lation may not be homogenous but consists of many
subpopulations. Therefore, prior to statistical analysis
of modelling and simulation results, some sort of clus-
tering should be performed in order to detect subpop-
ulations. In case of bioequivalence studies, detection
of clusters in model data space is of main import-
ance, since clusters are primary indications for bio-
non-equivalence. Many clusters may indicate systemic
differences between drug formulations, thus imply-
ing bio-non-equivalence of the two formulations. The
simplest approach to clustering is to represent the data
graphically and to find clusters visually. If modelling
and simulation has reduced dimension of data space
sufficiently, detecting the clusters visually is the most
effective method.

4.1 Analysis of parameters

Analysis of model parameter values distributions
provides information on importance of the parameter
to the modelled dynamics and on systemic differences
between subjects and their testing conditions (fas-
ted – fed, formulation 1(R) – formulation 2(T), ...).
High deviation of parameter results from low influ-
ence of the parameter on model dynamics, therefore,
the amount of information that such parameter car-
ries is small and vice versa. However, since dealing
with large non-linear, time-varying models, they are
very likely unidentifiable, therefore, parameter val-
ues are not always a reliable measure of comparison.
Only when parameter values are grouped in distinct
clusters, the parameter may be used for comparison
purposes. Since two drug formulations are compared
in the study, two dimensional plots are chosen. Each
axis carries parameter values for one drug formula-
tion, therefore, each person is represented with one
data point. Parameter values, grouped near the main
diagonal of the plot, suggest that drug formulations
are equal regarding the observed parameter. In Fig. 5,
parameter values for tablet dissolution are represented.
There it can be seen that dissolution of the tablet is
reduced in fed studies and that there are no signific-
ant differences between the two formulations, since
data points, except for some outliers, are distributed
symmetrically around main diagonal. The fuzzy sub-
model for drug pre-systemic metabolism shows cer-
tain differences between fed and fasted conditions, as
well as between drug formulations (Fig. 6). In Fig. 6 it
can be seen that in study 3, at around 1 h after admin-
istration, in fasted conditions, formulation 2 metabol-
ises faster, however, in fed conditions formulation 1
metabolises faster.
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Fig. 5. Tablet dissolution in different studies, on x-axis
values of parameters for formulation 2(T) and on
y-axis values of parameters for formulation 1(R)
are presented, crosses represent fasted study and
asterisks represent fed study, each point repres-
ents one subject.
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Fig. 6. Time course of fuzzy sub-model in study 3 (15
subjects) for velocity of metabolite generation in
stomach.

4.2 Analysis of quantities

Quantities in compartments are more reliable inform-
ation than parameter values in cases of unidentifi-
able models, since unidentifiability implies that sim-
ilar time courses of quantities in compartments can
be achieved by different parameter values. In Fig. 7
cumulative quantities of metabolite generated in stom-
ach are shown. It can be seen that in spite of differ-
ences in fuzzy sub-model, cumulative profiles for fas-
ted condition do not differ significantly. However, the
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Fig. 7. Cumulative profiles of metabolite generated in
stomach for study 3 (15 subjects).

difference is obvious in fed conditions, where higher
levels of metabolite were produced for formulation 1
in study 3. Similar time courses of 15 subjects are
not very transparent. Cumulative profiles, where final
value is often the most important, can also be rep-
resented in similar way as parameters in Fig. 5. In
Fig. 8 it can be seen that for study 1, there are two
distinct clusters, indicating differences between fed
and fasted conditions, however, the most important
difference for bioequivalence is that the two clusters
are not placed symmetrically around main diagonal,
indicating differences between the two drug formula-
tions. For study 2, no significant differences can be
found. For study 3, one cluster, mostly symmetric-
ally distributed around main diagonal can be found,
however, bellow diagonal mostly data points for fed
conditions are found and above diagonal mostly data
points for fasted conditions are found. The structure
of the cluster thus suggests difference regarding to
fasted-fed conditions as well as differences between
the two drug formulations, however, the differences
are not as significant as for study 1.

5. CONCLUSION

Graphical representations of data is a simple tool for
data mining in drug and therapy design. However, it
may carry a lot of transparent information, when plots
are carefully chosen. Compartment based modelling
and simulation approach, when complex models are
used, often still produces large quantities of new data
and the information within is often not transparent.
Therefore, a graphical representation can be helpful
again. Parameter values are suitable to represent, how-
ever, unidentifiability of the model reduces the reli-
ability of the information they carry. Time courses
of quantities in compartments are often too complex
to analyse, since different subjects can produce a lot
of different time profiles. Final values of cumulative
profiles carry a very compressed information on sys-
tem dynamics that can be transparently graphically
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Fig. 8. Cumulative quantities of metabolite generated
in stomach, on x-axis values for formulation 2(T)
and on y-axis values for formulation 1(R) are
presented, crosses represent fasted study and as-
terisks represent fed study.

represented. Clustering of final values of cumulative
quantities carries the information on equivalence of
formulations under different conditions and may serve
as a starting point for necessary drug formulation re-
design. Though perhaps not completely in line with
other, more formalistic, data mining techniques

the presented approach can serve as a starting point for
further work on pharmacokinetic data analysis.
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