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Abstract: One of the most fundamental properties of any class of dynamical systems
is the study of well-posedness, i.e. the existence and uniqueness of a particular type of
solution trajectories given an initial state. In case of interaction between continuous
dynamics and discrete transitions this issue becomes highly non-trivial. In this survey
an overview is given of the well-posedness results for complementarity systems,
which form a class of hybrid systems described by the interconnection of differential
equations and a specific combination of inequalities and Boolean expressions as
appearing in the linear complementarity problem of mathematical programming.
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1. INTRODUCTION

In the companion paper (Çamlıbel et al., 2002a)
the importance of well-posedness, i.e. the existence
and uniqueness of solution trajectories given an
initial condition, has been highlighted for hybrid
dynamical systems. In the current paper we will
consider this problem for a subclass encompassing
a broad range of interesting discontinuous dynam-
ical systems: unilaterally constrained mechanical
systems, switched electrical circuits, piecewise lin-
ear systems, optimal control problems with in-
equality constraints, relay and variable structure
systems, and so on (Heemels et al., 1999a). Typ-
ically these systems are characterized by the in-
terconnection of a smooth dynamical system and
a special combination of inequalities as appearing
in the linear complementarity problem (Cottle et
al., 1992) of mathematical programming. The sys-

tems arising in this manner are called complemen-
tarity systems and can be written in terms of a
state variable x and auxiliary vectors v and z of
the same length:

ẋ(t) = f(x(t), v(t)) (1a)
z(t) = h(x(t), v(t)) (1b)
0 ≤ z(t) ⊥ v(t) ≥ 0, (1c)

where the last line means that the components
of the auxiliary variables v(t) and z(t) should be
nonnegative, and satisfy z�(t)v(t) = 0. Note that
this implies that for each index i and for each time
t at least one of the two variables vi(t) and zi(t)
should be equal to 0.

The aim of the current paper is to present the
state-of-the-art of well-posedness results for the
complementarity class of hybrid dynamical sys-
tems.
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2. SOLUTION CONCEPTS

Although an extensive discussion on solution con-
cepts has been presented in the companion paper
(Çamlıbel et al., 2002a), we recall here the neces-
sary aspects to be self-contained.

The system (1) consists of a number of different
dynamical regimes or “modes” that are glued to-
gether. The modes correspond to a fixed choice, for
each of the indices i, between the two possibilities
vi ≥ 0, zi = 0 and vi = 0, zi ≥ 0, so that
a complementarity system in which the vectors
v and z have length m has 2m different modes.
The specification (1) is in general not complete
yet; one has to add a rule that describes possible
jumps of the state variable x when a transition
from one mode to another takes place (think of
mechanical systems with impacts). However, we
will first introduce notions of solutions for the case
in which jumps are absent.

For complementarity systems one may develop
several solution concepts, which may be similar to
the notion of an execution for hybrid automata
(Johansson et al., 1999; Lygeros et al., 1999), or
to the solution concept for differential inclusions as
used for differential equations with discontinuous
right-hand sides (Filippov, 1988). A solution con-
cept of the first type can for instance be formulated
as follows.

Definition 2.1. A set E ⊂ R+ is called an admis-
sible event times set , if it is closed and count-
able, and 0 ∈ E . To each admissible event
times set E , we associate a collection of inter-
vals between events τE = {(t1, t2) ⊂ R+ |
t1, t2 ∈ E ∪ {∞} and (t1, t2) ∩ E = ∅}.

Note that both left and right accumulations 1 of
event times are allowed by the above definition.

Definition 2.2. A quadruple (E , v, x, z) where E is
an admissible event times set, and (v, x, z) : R+ 
→
R

m+n+m is said to be a hybrid solution of (1) with
initial state x0, if x(0) = x0, x is continuous on R+
and the following conditions hold for each τ ∈ τE :

(1) The triple (v, x, z)|τ is real-analytic.
(2) For all t ∈ τ , it holds that

ẋ(t) = f(x(t), v(t))
z(t) = h(x(t), v(t))
0 ≤ v(t) ⊥ z(t) ≥ 0

Without loss of generality , we assume that a hy-
brid solution (E , v, x, z) is nonredundant , i.e. there
does not exist a t ∈ E and t′, t′′ with t′ < t < t′′

such that (v, x, z) is analytic on (t′, t′′).

1 An element t of a set E is said to be a left (right)
accumulation point if for all t′ > t (t′ < t) (t, t′) ∩ E
((t′, t) ∩ E) is not empty.

Definition 2.3. A triple (v, x, z) of vector func-
tions is said to be a forward solution of the system
(1) on the interval [a, b) if x is continuous and there
exists a sequence of time points (t0, t1, . . . ) with
t0 = a, tj+1 > tj for all j, and either tN = b or
limj→∞ tj = b, as well as for each j = 0, 1, . . . an
index set Ij , such that for all j the restrictions of
x(·), v(·), and z(·) to (tj , tj+1) are real-analytic,
and for all t ∈ (tj , tj+1) the following holds:

ẋ(t) = f(x(t), v(t)), z(t) = h(x(t), v(t))
zi(t) = 0 for i ∈ Ij , vi(t) = 0 for i �∈ Ij

zi(t) ≥ 0 for i �∈ Ij , vi(t) ≥ 0 for i ∈ Ij .

Both definitions require that the state x of a solu-
tion trajectory is continuous across events. For so-
called “high-index” systems (e.g. constrained me-
chanical systems), this requirement is too strong
and one has to add jump rules that connect con-
tinuous states before and after an event has taken
place. Under suitable conditions (specifically, in
the case of linear complementarity systems and
in the case of Hamiltonian complementarity sys-
tems), a general jump rule may be given; see
(Heemels et al., 2000; van der Schaft and Schu-
macher, 1998) and Section 5 below. Another pos-
sibly restrictive aspect of the forward solution con-
cept lies in the fact that it assumes that the set of
event times is well-ordered 2 by the usual order of
the reals, but not necessarily by the reverse order;
in other words, event times may accumulate to the
right, but not to the left. Hence, a forward solution
is a hybrid solution with a particular type of event
times set E .

Definition 2.4. An admissible event times set E
is said to be left (right) Zeno free if it does not
contain any left (right) accumulation points. A
hybrid solution is said to be left (right) Zeno free
if the corresponding event times set is left (right)
Zeno free. It is said to be left (right) Zeno if it
is not left (right) Zeno free, and non-Zeno if it is
both left and right Zeno free.

A forward solution is a left Zeno free hybrid
solution, but not vice versa as continuation beyond
a right-accumulation is not possible in Def. 2.3
(although it might be extended).

An alternative concept that foregoes explicit men-
tion of events is the following one, which turns out
to be convenient for complementarity systems that
satisfy a certain passivity condition.

Definition 2.5. A triple (x, v, z) ∈ Ln+2m
2 is said

to be an L2-solution of (1) on the interval [0, T ]
with initial condition x0 if for almost all t ∈ [a, b]
the following conditions hold:

2 An ordered set S is said to be well-ordered if each
nonempty subset of S has a least element.



x(t) = x0 +
∫ t

0
f(x(s), v(s)) ds

z(t) = h(x(t), v(t))

0 ≤ z(t) ⊥ v(t) ≥ 0.

3. LINEAR COMPLEMENTARITY SYSTEMS

As the interconnection of a continuous, time-
invariant, linear system and complementarity con-
ditions, a linear complementarity system (LCS)
can be given by

ẋ(t) = Ax(t) + Bu(t) (2a)
y(t) = Cx(t) + Du(t) (2b)
0 ≤ u(t) ⊥ y(t) ≥ 0, (2c)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
m, and A,

B, C and D are matrices with appropriate sizes.
We denote (2a)-(2b) by Σ(A, B, C, D) and (2) by
LCS(A, B, C, D).

One may look at LCS as a dynamical extension of
the linear complementarity problem.

Problem 3.1. LCP(q, M): Given an m-vector q
and m × m matrix M find an m-vector z such
that

0 ≤ q + Mz ⊥ z ≥ 0. (3)

We say z solves (or is a solution of) LCP(q, M), if
z satisfies (3). The set of solutions of LCP(q, M)
is denoted by SOL(q, M).

Definition 3.2. A matrix M ∈ R
m×m is called

• a P -matrix if all its principal minors detMII

for I ⊆ {1, . . . , m} are positive.
• positive (nonnegative) definite 3 if xT Mx >

0 (≥ 0) for all 0 �= x ∈ R
m.

Note that every positive definite matrix is a P -
matrix, but the converse is not true. However,
every symmetric P-matrix is also positive definite.

Definition 3.3. The dual cone of a given nonempty
set S ⊂ R

m, denoted by S∗, is given by {v ∈ R
m |

vT w ≥ 0 for all w ∈ S}.

The final ingredient of our preparation is the
“index” of a rational matrix.

Definition 3.4. A rational matrix H(s) ∈ R
l×l(s)

is said to be of index k, if it is invertible as a
rational matrix and s−kH−1(s) is proper. It is
said to be totally of index k, if all its principal
submatrices are of index k.

3 Note that the matrix is not assumed to be symmetric.

With a slight abuse of terminology, we say that a
linear system Σ(A, B, C, D) is (totally) of index k,
if its transfer matrix G(s) := C(sI − A)−1B + D
is (totally) of index k.

3.1 Linear complementarity systems with index 1

The following theorem provides sufficient condi-
tions for well-posedness in the sense of existence
and uniqueness of left Zeno free hybrid solutions
to LCS with index 1.

Theorem 3.5. (Çamlıbel, 2001) Consider a
LCS(A, B, C, D) with Σ(A, B, C, D) totally of in-
dex 1. Suppose that D + C(σI − A)−1B is a P -
matrix for all sufficiently large σ ∈ R. There exists
a left Zeno free hybrid solution of LCS(A, B, C, D)
with the initial state x0 if and only if LCP(Cx0, D)
is solvable. Moreover, if such a solution exists it
is left Zeno free unique, i.e. there is no other left
Zeno free solution.

3.2 Linear passive complementarity systems

When the underlying system Σ(A, B, C, D) is pas-
sive (in the sense of (Willems, 1972)) we call the
overall system (2) a linear passive complementar-
ity system (LPCS). As shown in (Çamlıbel, 2001,
Lemma 3.8.5), the passivity of the system (under
some extra assumptions) implies that it is of index
1. Hence, Theorem 3.5 is applicable to LPCS.
Additionally, it can be shown that there are no
left Zeno solutions for LPCS as formulated in the
following theorem (hence, a particular type of Zeno
behaviour is excluded).

Theorem 3.6. (Çamlıbel, 2001) Consider a
LCS(A, B, C, D) with Σ(A, B, C, D) being passive,
(A, B, C) being minimal and col(B, D + DT ) :=(

B
D + DT

)
of full column rank. Let QD = {z |

z solves LCP(0, D)}. There exists a hybrid solu-
tion of LCS(A, B, C, D) with the initial state x0
if and only if Cx0 ∈ Q∗

D. Moreover, if a solution
exists it is unique 4 and left Zeno free.

An important observation is the following. If
(E , u, x, y) is a solution of LCS(A, B, C, D) then
(E , t 
→ eρtu(t), t 
→ eρtx(t), t 
→ eρty(t)) is a
solution of LCS(A + ρI, B, C, D). This correspon-
dence makes it possible to apply the above theorem
to a class of nonpassive systems. Indeed, even if
Σ(A, B, C, D) is not passive Σ(A + ρI, B, C, D)
may be passive for some ρ . In this case, we say that
Σ(A, B, C, D) is passifiable by pole shifting (PPS).
By using the necessary and sufficient conditions for
PPS property in (Çamlıbel, 2001, Thm. 3.4.3), we
can state the following extension of Theorem 3.6.

4 It can also be shown that this solution is unique in L2.



Theorem 3.7. (Çamlıbel, 2001) Consider a
LCS(A, B, C, D) with col(B, D + DT ) full column
rank and (A, B, C) minimal. Let E be such that
ker E = {0} and im E = ker (D + DT ). Suppose
that D is nonnegative definite and ET CBE is
symmetric positive definite. There exists a hybrid
solution of LCS(A, B, C, D) with the initial state
x0 if and only if Cx0 ∈ Q∗

D. Moreover, if a solution
exists it is unique4 and left Zeno free.

3.3 Piecewise linear systems

As is well-known (see e.g. (Eaves and Lemke,
1981)), piecewise linear relations may be described
in terms of linear complementarity problems. An
immediate consequence is that several piecewise
linear systems can be recast as linear complemen-
tarity systems. In this paper, we will focus, for the
sake of simplicity, on a specific type of piecewise
linear systems, namely linear saturation systems,
which are of the form

ẋ(t) = Ax(t) + Bu(t) (4a)
y(t) = Cx(t) + Du(t) (4b)

(u(t), y(t)) ∈ saturationi, (4c)

where saturationi is a charateristic of the form de-
picted in Figure 1 with ei

2−ei
1 > 0 and f i

1 ≥ f i
2. We

denote the overall system (4) by SAT(A, B, C, D).
Note that relay characteristics can be obtained
from saturation characteristics by setting f i

1 = f i
2.

We adopt the solution concept defined for LCS to
saturation systems as follows.

Definition 3.8. A quadruple (E , u, x, y) where E
is an admissible event times set, and (u, x, y) :
R+ 
→ R

m+n+m is said to be a hybrid solution
of SAT(A, B, C, D) with the initial state x0 if
x(0) = x0 and the following conditions hold for
each τ ∈ τE :

(1) The triple (u, x, y)|τ is analytic.
(2) For all t ∈ τ and all i ∈ {1, . . . , m}, it holds

that

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(ui(t), yi(t)) ∈ saturationi

One may argue that the saturation characteristic
is a Lipschitz continuous function (provided that
f i
1 − f i

2 > 0) and hence existence and uniqueness
of solutions follow from the theory of ordinary dif-
ferential equations. The following example shows
that this is not correct in general if the feedthrough
term D is nonzero.

Example 3.9. Consider the SISO system

ẋ = u (5)
y = x − 2u, (6)

�

�

�
�

�
�

�
�

�
�

ui

yi

ei
2

ei
1

f i
2

f i
1

Fig. 1. Saturation characteristic

where u and y restricted by a saturation charac-
teristic with e1 = −f1 = −e2 = f2 = 1

2 . Let the
periodic function ũ : R+ → R be defined by

ũ(t) =




1/2 if 0 ≤ t < 1
−1/2 if 1 ≤ t < 3
1/2 if 3 ≤ t < 4

and ũ(t − 4) = ũ(t) whenever t ≥ 4. By using this
function define x̃(t) =

∫ t

0 ũ(s) ds, and ỹ = x̃ − 2ũ.
It can be verified that (−ũ, −x̃,−ỹ), (0, 0, 0) and
(ũ, x̃, ỹ) are all solutions of SAT(0, 1, 1,−2) with
the zero initial state.

As illustrated in the example, the Lipschitz con-
tinuity argument does not work in general for the
case f i

1 > f i
2. Also if f i

1 = f i
2 (the relay case) this

reasoning does not apply.

Theorem 3.10. (Çamlıbel, 2001) Consider
SAT(A, B, C, D). Let R and S be the diagonal
matrices with ei

2 − ei
1 and f i

2 − f i
1, respectively,

on the diagonal. Suppose that G(σ)R − S is a
P -matrix for all sufficiently large σ. Then, there
exists a unique left Zeno free hybrid solution of
SAT(A, B, C, D) for all initial states.

4. NONLINEAR COMPLEMENTARITY
SYSTEMS

The previous sections are concerned with linear
complementarity systems. Results for (1) without
a linearity assumption on (1b)-(1c) are limited.
However, for forward solutions an extension can
be presented of Theorem 3.2 in (van der Schaft
and Schumacher, 1998) for the following systems

ẋ(t) = f(x(t)) + g(x(t))v(t) (7a)

z(t) = h(x(t)) (7b)

with complementarity conditions on v and z.

For x0 ∈ R
n we define the i-th leading row

coefficient ρi(x0) as

ρi(x0) := inf{j ∈ N \ {0} | LgL
j−1
f hi(x0) �= 0}

(8)



and the index set J(x0) as

J(x0) := {j ∈ k̄ | (hj(x0), . . . , L
ρj(x0)−1
f hj(x0)) = 0},

(9)
where L denotes the “Lie-derivative” (see, for
instance, (Nijmeijer and van der Schaft, 1990)) and
k̄ denotes the set {1, . . . , k}.

Theorem 4.1. Consider the complementarity sys-
tem (7) with f , g and h real-analytic. Consider
x0 ∈ R

n such that the matrix

(Lg•j
L

ρi(x0)−1
f hi(x0))i,j∈J(x0) (10)

has only positive principal minors. There exists an
ε > 0 such that a unique forward solution exists on
[0, ε) if and only if (hi(x0), . . . , L

ρi(x0)−1
f hi(x0)) is

lexicographically nonnegative 5 for all i ∈ k̄.

Note that the above result only deals with smooth
continuations and does not incorporate the possi-
bility of re-initializations.

5. GENERALIZATIONS INCLUDING JUMPS

Up to this point, we have presented well-posedness
results for complementarity systems in which the
x-part of the solutions is continuous. In this sub-
section, the available generalizations will be men-
tioned including the possibility of re-initializations
(state jumps). In such studies the issue of irregu-
lar initial states had to be tackled, i.e., the ini-
tial states for which there is no solution in the
senses defined so far for complementarity systems
(e.g. in case of the systems and solution concept
considered in Theorem 3.5 all initial states x0
for which LCP(Cx0, D) is not solvable). A dis-
tributional framework was used to obtain a new
solution concept for LCS (Heemels et al., 2000). In
principle, this framework is based on so-called Bohl
distributions of the form u(t) =

∑l
i=0 u−iδ(i) +

ureg(t), where δ is the delta or Dirac distribution
(supported at 0), δ(i) is the i-th derivative of δ
and ureg is a Bohl function. These distributions
can equivalently be characterized by the inverse
Laplace transforms of rational functions. A Bohl
distribution (u, x, y) is called an initial solution for
initial state x0, if it satisfies ẋ = Ax+Bu+x0δ; y =
Cx+Du as equalities of distributions, there exists
an I ⊆ {1, . . . , m} with yi = 0, i ∈ I and ui =
0, i �∈ I and finally, the Laplace transforms satisfy
û(σ) ≥ 0 and ŷ(σ) ≥ 0 for all sufficiently large
σ. In case (u(t), x(t), y(t)) is an ordinary function
these conditions mean that the system’s equations
(2) are satisfied on an interval of the form [0, ε)
for some ε > 0. In case the initial solution is not
a function, the impulsive part of u(t) will result in

5 A sequence of real numbers is called lexicographically
nonnegative, if the sequence is either the zero sequence or
the first non-vanishing term is positive.

a state jump from x0 to x+ := x0 +
∑

i AiBu−i

(see (Hautus and Silverman, 1983)). Particularly,
in (Heemels et al., 2000) it is shown that the above
re-initialization procedure corresponds for linear
mechanical systems with unilateral constraints to
the inelastic impact case. Moreover, in some cases
the jump of the state variable can be made more
explicit in terms of the linear projection operator
onto the consistent subspace of the new mode
along a jump space (Heemels et al., 2000).

Depending on the interval on which solutions exist,
we can now distinguish between three types of
well-posedness; global well-posedness means exis-
tence and uniqueness of solutions on the inter-
val R+ = [0,∞), local well-posedness on [0, ε)
for some ε > 0 and initial well-posedness means
the existence and uniqueness of an initial solu-
tion given arbitrary initial condition x(0) = x0.
In the terminology of hybrid automata (Lygeros
et al., 1999; Johansson et al., 1999), initial well-
posedness is equivalent to the LCS being non-
blocking and deterministic.

For the LCS(A, B, C, D) the rational matrices
G(s) and Q(s) are defined by C(sI − A)−1B + D
and Q(s) = C(sI − A)−1.

Theorem 5.1. (Heemels et al., 1999b)
LCS(A, B, C, D) is initially well-posed if and only
if for all x0 LCP(Q(σ)x0, G(σ)) is uniquely solv-
able for sufficiently large σ ∈ R.

The strength of this theorem is that dynamical
properties of an LCS are coupled to properties
of families of static LCPs, for which a wealth of
existence and uniqueness are available (Cottle et
al., 1992). For instance, a sufficient condition for
initial well-posedness is G(σ) being a P-matrix for
sufficiently large σ.

Clearly, initial well-posedness does not imply lo-
cal existence of solutions as in principle, an in-
finite number of re-initializations (jumps) may
occur on one time-instance without “time pro-
gressing.” This phenomenon is sometimes called
“live-lock.” However, sufficient conditions for lo-
cal well-posedness have been provided for LCS
(van der Schaft and Schumacher, 1996; Heemels
et al., 2000), as presented next. Consider the
LCS(A, B, C, D) with Markov parameters H0 = D
and Hi = CAi−1B, i = 1, 2, . . . and define the
leading row and column indices by

ηj = inf{i | Hi
•j �= 0}, ρj = inf{i | Hi

j• �= 0},

(11)

where j ∈ {1, . . . , k} and inf ∅ := ∞. The leading
row coefficient matrix M and leading column co-
efficient matrix N are then given for finite leading
row and column indices by



M :=




Hρ1
1•
...

Hρk

k•


 and N := (Hη1

•1 . . . Hηk

•k )

Theorem 5.2. (Heemels et al., 2000) If the lead-
ing column coefficient matrix N and the leading
row coefficient matrix M are both defined and P-
matrices, then LCS(A, B, C, D) has a unique local
left Zeno free solution on an interval of the form
[0, ε) for some ε > 0. Moreover, live-lock does not
occur; after at most one jump a smooth continua-
tion exists.

Besides these results including irregular states
and corresponding re-initializations, also the The-
orems 3.5, 3.6 and 3.7 can be extended to include
all initial states x0. The details can be found
in (Çamlıbel, 2001; Çamlıbel et al., 2002b), but
“roughly speaking” these results state that at the
initial time t = 0 there is at most one jump to the
set of regular states (i.e. satisfying the conditions
of the Theorems 3.5, 3.6 and 3.7) specified by the
unique initial solution after which a left-Zeno free
solution exists from the re-initialized state on R+.
Several equivalent characterizations of the jump
rule can also be found in (Çamlıbel, 2001; Çamlıbel
et al., 2002b).

First steps in the direction of getting global well-
posedness results for LCS with external inputs can
be found in (Çamlıbel et al., 2002b) for LPCS and
(Çamlıbel et al., 2000), where the underlying linear
system is of index 1.

6. CONCLUSIONS

The purpose of this paper was to give an overview
of the existing well-posedness results for the com-
plementarity class of hybrid dynamical systems.
Under varying conditions, statements on initial,
local and global existence and uniqueness of par-
ticular (initial, hybrid, forward or L2) types of
solutions have been presented. In certain cases
phenomena like left-accumulation points of event
times or live-lock have been excluded. The ex-
clusion of Zeno behaviour is important to go
from initial to local existence (e.g. by ruling
out live-lock) or from local to global (no right-
accumulations of events) and for uniqueness of
hybrid or L2-solutions (see e.g. (Pogromsky et
al., 2001)). Hence, Zeno behaviour plays a crucial
role in the analysis of well-posedness and deserves
further attention as is also pointed out in, for
instance, (Johansson et al., 1999). Also in the
simulation and the analysis of the behaviour of hy-
brid systems the absence of Zenoness is preferable.
Although the absence is often assumed, conditions
to verify this are rare. Some initial work in this
direction for linear complementarity systems can
be found in (Çamlıbel and Schumacher, 2001)

7. REFERENCES
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