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Abstract: In the hydraulic system, it is often that switch the control mode over
from one to the other, such as from position to velocity or from velocity to force.
In this paper, propose a flow calculation formula for the flow control valve in order to
have an LPV system representation. Then, design gain scheduled controllers for the
velocity and the force individually. During a switching mode, a control is generated by
adding two controller outputs with appropriate ratios. Usefulness of this approach is
shown by the experiment results, which are obtained from Injection molding machine
application.
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1. INTRODUCTION

Hydraulic control system is used in various in-
dustrial applications for the power in size, high
durability. In most cases, the electro-hydraulic
servosystem is applied to obtain the high repro-
ducibility and the fine dynamic performance of the
position, velocity or force control in the hydraulic
system. The hydraulic plant has many nonlinear
factors and components. For example, asymmetric
cylinder, mechanical friction, deadband, complex
flowpassage relates to hydraulic dynamics, the
effective control flow which depends on load condi-
tion and hysteresis. In addition to the above, plant
parameters are not constant, such as the bulk
modulus depends on the containing air quantity
or viscosity varies according to the temperature.
Also, it is often in indistrial hydraulic applications
that a control mode swicthes over from one to the
other sequentially, such as from the position to
pressure or from the velocity to force. These fac-
tors make a controller design complicated. How-

ever, because of the electro-hydraulic servosys-
tem capability, a number of studies have been
done in designing the controller. Approaches re-
ported recently are adaptive control(Bobrow and
Lum, 1996),(Plummer and Vaughan, 1996)and
sliding mode control(Ha et al., 1995). There, con-
troller structure becomes complicated and it is
not easy to realize the smooth operation and the
fast response. The robust control design by H∞
framework (Tunay et al., 2001) is also applied.
The controller design approach, which is based
on the linear model, make the closed-loop system
stable locally. When the load condition changes
significantly, there is a limitation in appling this
approch. Here, we examine gain scheduling con-
trol of the electro-hydraulic servosystem for the
velocity and force control in order to guarantee
stability and performance under the significant
plant parameter variation.
It is important that we take a varying load con-
dition and a complex flow characteristic of the
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Fig. 1. Injection Molding Machine appearance

Fig. 2. Test equipment

control valve around the null in consideration to
construct a plant model. One of the reasons to
make the situation difficult is the discontinuity
of the control flow calculation formula around
the null. In this paper, we propose a formula,
which interpolates the turbulent and the laminar
flow in the flow control valve so that the linear
model becomes continuous at the boundary for
the precise force control. Then, we compose the
linear plant model as an LPV (linear parame-
ter varying) system with a scheduling parameter
which depends on load force. Based on LPV plant
models, we design gain scheduling controllers for
the velocity and force. One of the contributions of
this paper is that present the way to design the
gain scheduled controller of the electro-hydraulic
servosystem. The other contribution is that we
study switching behavior from velocity to force
control mode with gain scheduled controllers ap-
plying to the Injection molding machine. Here, we
attempt to add up the outputs from the velocity
and the force controller according to the weighting
coefficient which is determined by the ratio of
actual force and the force reference value.

2. INJECTION MOLDING PROCESS

In the injection molding process, there is an in-
jection velocity control and a holding pressure
control mode. The velocity profile is generated
with respect to the mold shape so that the velocity
between melt plastic and mold surface becomes
constant. The force control of the holding pressure
mode makes the plastic stress uniform in order
to minimize the deformation of the product. The
electro-hydraulic servosystem is adapted to both
of the velocity and force control for the high
power, fast response and fine reproducibity. The
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Fig. 3. Velocity behavior (Case 1)
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Fig. 4. Force behavior (Case 1)
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Fig. 5. Velocity behavior (Case 2)
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Fig. 6. Force behavior (Case 2)

appearance of the Injection molding machine is
shown in Figure 1 and the structure scheme is
shown in Figure 2. Main components are a mold,
heaters, a screw, a hydraulic injection cylinder,
a flow control valve and transducers for the ve-
locity and force. The purpose to design the gain
scheduled controller here, is to have stable and
good performance under significant palnt param-
eter variation, caused by the load force change.
Also, the switching behavior from velocity to force
is important. To make it smooth, we generate
a control by adding up two controller outputs,
during the transition from velocity to force con-
trol. Figures 3,4 and figures 5,6 show the typical
behaviors, which we see often, when switch the



controlled variable from velocity to force without
any measures to make the transition smooth. In
figures 3,4, switching occurs at 7.5 cm/s velocity.
Figure 3 shows a rapid velocity change and an
revrse direction velocity at 0.4 sec. This means
that the injection ram moves to backward. This
phenomenon should be avoided in the process. In
Figure 4, there is a pressure peak at the just before
switching happens. In figures 5, 6, switching takes
place at 15 cm/s velocity. In this case, the reverse
velocity behavior and pressure peak are small, but
still exist.

3. FLOW CALCULATION FORMULAS

In the flow control valve, which has a sleeve
and spool, there are two typical flow conditions,
called the turbulent flow at the metering orifice
opening and laminar flow in the clearance between
sleeve and spool. Now, think about the flow at
the metering orifice A out of four orifices in
Figure 7, as an example. There are commonly
used flow calculation formulas (1), (3), with lap
la and clearance cr, for each conditions. However,
these two equations are not continuous at the
boundary. Hence, adopt equation (2) in order to
interpolate flow and derivation of the turbulent
and the laminar conditions.
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Fig. 7. Configuration of the plant

Then, continuous flow in whole operating range,
is given as follows

q2int = Kt

√
(xs − la)2 + c2r

√
Ps − P2 ... la ≤ xs (1)

q2ini =

(
3

Kl

)3 (Ktcr

4

)4 (xs − la)3

Ps − P2

+Ktcr

√
Ps − P2 ... la + xsa ≤ xs < la (2)

q2inl = Kl
Ps − P2

−(xs − la)
... xs < la + xsa (3)

here, xsa = −4Cr

√
Ps − P2/(3KtKl)

According to these equations (1),(2) and (3),
the flow from control valve highly depends on
load pressure (or force) and is nonlinear. Because
of such a characteristics, a fixed controller at

the one operating condition can not satisfy the
performances in the over all operating range.
P2(t), P1(t) are bore and rod pressure, A2, A1 are
effective piston areas of the cylinder. mp and ml

are masses, xp(t) is piston displacement. Kt, Kl
are coefficients of the turburant and the laminar
flow. Linearization of the equations (1),(2) and
(3) at the arbitrary operating point (xs0, P20). We
have

δq2int = Kt

(
xs0 − la√

(xs0 − la)2 + c2r

√
Ps − P20δxs

−
√

(xs0 − la)2 + c2r

2
√

(Ps − P20)
δP2

)
(4)

δq2ini =

(
3

Kl

)3 (Ktcr

4

)4 3(xs0 − la)2

Ps − P20
δxs +

((
3

Kl

)3

×
(

Ktcr

4

)4 (xs0 − la)3

Ps − P20
− Ktcr

2
√

Ps − P20

)
δP2 (5)

δq2inl = Kl

(
Ps − P20

−(xs0 − la)
δxs − 1

−(xs0 − la)
δP2

)
(6)

For the simple presentation such as (7), choose
the corresponding equation from (4), (5) or (6)
according to spool displacement xs(t).

δq2in = K2inxsδxs + K2inp2δP2 (7)

The same way as above, derivative equations of
the metering orifice B, C and D are described
below, respectively.

δq2out = K2outxsδxs + K2outp2δP2 (8)

δq1out = K1outxsδxs + K1outp1δP1 (9)

δq1in = K1inxsδxs + K1inp1δP1 (10)

4. MODELING

4.1 Linear System

Figure 8 presents the block diagram of the linear
system from the input δvsig, which is applied to
the flow control valve, to the controlled variable
hydraulic force VFh

and piston velocity Vxpv . vsig

is the control. rsig is the rated signal and rstr is the
rated spool displacement. wv and ζv represents the
control valve dynamics as the second order trans-
fer function. The pressure in the actuator chamber
is calculated from the hydraulic compressibility,
called as bulk modulus β, and the effective vol-
ume change caused by flow in and out from the
chamber, plus piston displacement. A mass, an
equivalent viscous resistance and a spring com-
pose the load. In the actual injection process, the
viscous resistance and spring rate change under
the various operating conditions. Here, suppose
that they are constant in the velocity and force
control mode. Here, take state vector δx as

δx = (δxsv , δxs, δP2, δP1, δxpv , δxp)T (11)

From the linear block diagram in Figure 8,
the linear state space equation is represented in
equation (12) and (13).



δẋ =




−2ζvωv −ω2
v 0 0

1 0 0 0
0 ap(3, 2) ap(3, 3) 0
0 ap(4, 2) 0 ap(4, 4)

0 0
104A2

mp + ml
− 104A1

mp + ml
0 0 0 0

0 0
0 0

ap(3, 5) 0
ap(4, 5) 0
102b

mp + ml

102k

mp + ml
1 0


 δx +




rstr

rsig

0
0
0
0
0


 δvsig (12)

(
VF h

Vxpv

)
=

(
0 0

A2

457.78
− A1

457.78
0 0

0 0 0 0 0.1 0

)
δx (13)

Some of the matrix elements, such as ap(3, 2), are
not constant. Here,

ap(3, 2) = β
K2inxs − K2outxs

V2 + A2(Ln + xp0)

ap(3, 3) = β
K2inP2 − K2outP2

V2 + A2(Ln + xp0)

ap(3, 5) = −β
A2

V2 + A2(Ln + xp0)

ap(4, 2) = β
K1inxs − K1outxs

V1 + A1(Ln − xp0)

ap(4, 4) = β
K1inP1 − K1outP1

V1 + A1(Ln − xp0)

ap(4, 5) = β
A1

V1 + A1(Ln − xp0)

Ln is a half with total piston stroke.

4.2 LPV System

As mentioned above, some of the elements in
the state space equation vary according to the
operating conditions. To have linear state space
equation, we adopt a LPV system presentation,
which has the parameter that is the function of
the load force. Equation 12 has the form as

δẋ =
∂

∂x
f(x0)δx + Bpδvsig (14)

δy = Cpδx (15)

Two matrices Bp and Cp are constant and all
elements in these matrices are decided based on
the mechanical specifications. x0 is a state at the
equilibrium point. But, it is difficult to have the
solution of x0 from the implicit function of f(x0)+
Bpvsig0 = 0. Now, suppose that x0 is given and
then y0 is calculated by y0 = Cpx0. Addition to
this, suppose that the scheduling parameter θ is
a smooth function of the y0, such as θ = ϕ(y0).
The linear state space equation, which depends on
the scheduling parameter θ, represents the plant
behavior in the neighborhood of the equilibrium
x0 (Uchida, 1995), (Rugh and Shamma, 2000). By
the way, ap(3, 2), ap(4, 4) and so on, are decided
when xs0, P20, P10 and xp0 are fixed. But, as
explained already, it is hard to decide these values

from the related equations.
Here, we use a value of the variable which is
obtained from the following simulation. Apply
PI controller to close the velocity loop in the
nonlinear plant model. Then, apply relatively slow
enough ramp velocity reference signal (δvsig =
0) so that we are able to assume all state variables
are close enough to the equilibrium states. Now,
we have a set of the equilibrium points for the
specified operating range in both velocity control.
Using these values, whose could be considered
as the equilibrium set, figure out the elements
of equation (12), such as ap(3, 2) so on, with
respect to corresponding scheduling parameter
that is described as equation (19) or (20). In the
case of force plant model, the way to have PLV
representation is same as mentioned above. Then,
we represent these elelments by the polynomial
approximation, as follows

ap(θ) = ap0 + ap1θ + ap2θ
2 + ap3θ

3 (16)

The state space equations (12), (13) are rewrited
as equations (17), (18) with the scheduling param-
eter.

δẋp = Ap(θ)δxp + Bpδvsig (17)

δyp = Cpδxp (18)

Considering the flow characteristic which depends
on

√�P , define the scheduling parameter θv for
the velocity and θn for the force control as

θv =

1√
1 − Fx

Fmax

− 1

1√
1 − Fv·rated

Fmax

− 1

, [0 ≤ θv ≤ 1] (19)

θn =

1√
1 − Fx

Fmax

− 1

1√
1 − Fn·rated

Fmax

− 1

, [0 ≤ θn ≤ 1] (20)

Fmax is maximum force, Fv·rated and Fn·rated are
the rated force in the velocity and force control
mode, Fx is actual force which is measured as VFh

.

5. GAIN SCHEDULED CONTROLLERS

Designing gain scheduled controllers for the voloc-
ity and force, we take following issues in consider-
ation. In the velocity loop, the rise time is within
15ms to the step reference and minimizes steady
state error. In the force controller design, the force
follows to the ramp reference signal, which reaches
to the rated force with 15 ms and zero steady
state error. In order to construct the generalized
plant for the H∞ controller design framework,
two weighting functions, Ws(s) for the sensitivity
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Fig. 8. Block diagram of the linearlized plant

function and Wa(s) for the additive uncertainty
at the input of the plant, are specified after the
several try and error. For the velocity controller,
we use

Wsv(s) =
0.0025s+ 68.75

s+ 0.005
, Wav(s) =

5(s+ 1)
s+ 375

and at the force controller design

Wsn(s) =
0.4s+ 5
s+ 0.01

, Wan(s) =
25(s+ 1)
s+ 75

Beside these weighting functions, (0.1s+0.015)/s
is added in series to the plant in the velocity
control. Also, (50s + 1)/(s + 0.01) is in series
to force plant to improve the response. When
solve H∞ controller design problem with LMI
formulation, the two positive definite matrices, in
many cases described as X and Y, also let the
function of the scheduling parameter, such as

Xv(θv) = Xv0 + Xv1θv + Xv2θv
2 + Xv3θv

3

so that minimize the conservatives of the con-
troller. As the results, the generalized plant be-
comes function of the continuous scheduling pa-
rameter and has to solve infinite number of LMIs.
In order to reduce this problem to finite num-
ber of constraints, a technique that proposed
by Azuma (Azuma et al., 2000) to construct a
convex hull is introduced. For the more details
of the gain scheduled controller for the velocity
and force control, see (Sugiyama et al., 2000),
(Sugiyama and Uchida, 2001) and (T. Sugiyama
and K. Uchida, 2002).

6. SWITCHING SCHEME AND TEST
RESULTS

In this experiment, the rated velocity is 200 mm/s,
the rated force is Fn·rated = 160 kN and the
maximum force Fmax = 183 kN are defined by the
specific product and mold capability. The actual
load force in the velocity control mode becomes
40 to 50 kN , which is used in calculation of

the scheduling parameter θv. In the force control
mode, the controlled force comes up to 60 kN in
the process. The way to add up the outputs form
the velocity and force controller is described in
Figure 9.
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Fig. 9. Explanation of the switching method

Summing up control depends on the force level
and whether it overs a set point or not. If the force
Fx over the set force level Fr when the switching
occurs. In this case, follows the line ”D-E-F-G” in
Figure 9. Moreover, set the velocity reference as
zero. And, the force crosses the point ”F”, comes
from the direction of ”E”, switch to the force
control completely. In the other case, it means
that the force level is below to a set point, follows
the line ”O-A-B-C” and keep to use the velocity
reference as it is. In the range ”A” to ”B” or ”E”
to ”F”, we use the add up control. Let’s say, uv

is the velocity controller output and uf is the one
of the force controller. The switching control ut is
calculated as

ut = (1− α)uv + αuf (21)

In Figure 10,11 and 12,13 show the transitional
behaviors that occurs in 7.5 and 15 cm/s veloc-
ity. At the beginning of the velocity control, the
big overshoot or fluctuation is observed. This is
caused by dead time that we do not consider in
gain scheduled controller design, so far. But, there
is not significant influence on switching opera-
tion. Looking at the switchig behaviors, obtain
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Fig. 10. Velocity behavior with control (Case 3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

 H
yd
rau
lic 
Fo
rce

 [k
N]

 t  [s]

Fig. 11. Force behavior with control (Case 3)
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Fig. 12. Velocity behavior with control (Case 4)
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Fig. 13. Force behavior with control (Case 4)

reasonable results by the switching control prin-
ciple, mentioned in this paper. It is obvious that
the velocity comes down near to zero level very
smoothly in the both of cases. Force is chang-
ing quite smooth, too. The smooth transition is
achieved.

7. CONCLUSION

In this paper, we propose the flow calculation for-
mula to have continues flow between the turbulent
and laminar flow so that compose the linear plant
model with a scheduling parameter. Then, we

obtained the values of the system variables by the
simulation in order to design the gain scheduled
controller for the velocity and force control based
on LPV system. The usefulness of the controller
design method, described here, is confirmed to the
electro-hydraulic servosystem. Also, the way de-
scribed here to switch from velocity to force makes
the transition behavior smooth successfully.
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