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Abstract: We consider the control of mechanical systems based on sliding mode
control techniques. Recently developed simplex control methods are shown to converge
in a finite time when applied to nonlinear systems under bounded deterministic
uncertainty. Applications are considered to the control of mechanical systems in which
the control action is provided by monodirectional devices.
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1. INTRODUCTION AND PROBLEM
STATEMENT

In this note a class of nonlinear uncertain con-
trolled objects, sufficiently wide to include the
representation of most of the robotic struc-
tures, is considered. The control problem con-
sists in forcing this class of objects to fulfill the
control aim with the constraint that the con-
trol vector u belongs to a finite set of vectors{
ui ∈ RK : i = 1, . . . , p

}
. The control design con-

sists in the choice of the vectors ui, the integer
value p, the set of events together with the suitable
commutation criterion in order to guarantee the
achievement of a prespecified control objective
through a suitable sliding condition. The formula-
tion of the above control problem, in many cases,
implies a representation of the controlled system
in terms of discontinuous differential equations.

The basic problem is the following. We consider a
fixed known nominal control system

ẋ = f(t, x, u), t ≥ 0 (1)

with control constraint

u ∈ U. (2)

The system is subject to unknown additive uncer-
tain perturbations of deterministic nature. Thus
every uncertain system’s state y evolves according
to

ẏ = f(t, y, u) + ϕ(t, y, u), t ≥ 0 (3)

where ϕ represents some uncertainty acting on
the nominal system (1). Here the control vector
u ∈ RK and the state variables x, y ∈ RN .

A given sliding manifold

s(t, x) = 0 (4)

is fixed in order to fulfill prescribed control aims,
where s(t, x) ∈ RM . The sliding manifold is
designed in such a way that, when the trajectories
of system (3) belong to it, then the desired control
objectives, e.g. stabilization or model tracking, are
satisfied.

The control aim is to select an admissible feedback
control law u = u∗(t, x) ∈ U such that the corre-
sponding state y through (3), issued from a given
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initial position at time t = 0, reaches in a finite
time t∗ some point fulfilling (4) (attainability) and
remains on the sliding manifold (4) for all t ≥ t∗

(sliding).

A known constant L > 0 is fixed. We want to
control those uncertain state variables y = y(t) of
the control system (3) which fulfill the condition

|y(t)| ≤ L, t ≥ 0 (5)

in order to guarantee the sliding property

s [t, y(t)] = 0 (6)

for every t sufficiently large. We assume that
s [t, y(t)] is available to the controller for feedback
purposes for each t ≥ 0 and every uncertain state
y.

We consider plants (3) affected by noise in such
a way that the statistical informations needed to
employ stochastic control techniques are unavail-
able to the controller. Instead we rely only on the
nominal system (1), on available bounds about
uncertainties and some qualitative features of the
dynamics.

At least three methods are known to control a
dynamical system by sliding mode techniques, i.e.
in order to fulfill (4).

The first two, namely component-wise sliding con-
trol and unit control, have been widely investi-
gated, see (Utkin, 1992) for a survey.

In the following we focus on the less known sim-
plex methods (originated by (Bajda and Izosi-
mov, 1985)) which we now describe in a more
general and new setting.

2. MOVING SIMPLEX CONTROL UNDER
UNCERTAINTY

Let Ω be an open set of RN containing the closed
ball of center 0 and radius L. We assume that
N ≥ M , U is a closed set in RK , and

s : [0,+∞) × Ω → RM

is a smooth mapping;

f, ϕ : [0,+∞) × Ω × U → RN

are Carathéodory maps, for every uncertain dy-
namics ϕ. Denote by Ds(t, x) the M ×N jacobian
matrix ∂si(t,x)

∂xh
, i = 1, . . . , M , h = 1, . . . , N and

assume that Ds(t, x) has maximum rank every-
where.

The basic assumption is the following. There exist
Carathéodory functions

u1(t, x), . . . , uM+1(t, x)

taking values in U , such that the vectors

gi = gi(t, x) = Ds(x)f [t, x, ui(t, x)]

fulfill

0 < a ≤ |gi| and gT
i gh ≤ −c2 |gi| |gh| (7)

if i �= h

for every (t, x) and some constants a, c �= 0.

If (7) holds, then (for any given (t, x)) the vectors
gi, i = 1, . . . , M +1 define a simplex in RM in the
following sense. RM is partitioned in M + 1 cones

Qh = cone (gi : i �= h) =

=




∑
i�=h

αigi : αi ≥ 0 if i �= h


 , (8)

h = 1, . . . , M + 1

with pairwise disjoint interiors. Thus for every
t ≥ 0 and x with s(t, x) �= 0 there exist coefficients
αi = αi(t, x) ≥ 0 such that

s(t, x) =
∑
i�=h

αigi(t, x) (9)

with the smallest possible index h = h(t, x). Then
the moving simplex control law is defined by

u∗(t, x) = uh(t, x). (10)

The cones Qh given by (8) cover RM , hence u∗

given by (10) is well defined.

By (10), the control law u∗ undergoes discontinu-
ities as a function of x. By injecting u∗ into (3)
we consider the system

ẏ(t) = (11)

= f (t, y(t), u∗ [t, y(t)]) + ϕ (t, y(t), u∗ [t, y(t)])

where the dynamics f [t, x, u∗(t, x)], ϕ [t, x, u∗(t, x)]
are now discontinuous functions of x. Based on
the Filippov notion of solution, it is possible to
build a rigorous theory, see (Filippov, 1988) and
(Utkin, 1992), in good agreement with the ob-
served behaviour of some real control systems, see
(Utkin, 1978).

In the following, states of (3) corresponding to u∗

will be understood as Filippov solutions of (11).

We emphasize that no information beyond those
available about the nominal system (1), (2), (4)
are needed in order to obtain the moving simplex
control law u∗ in (10).

Under explicit conditions involving the known
nominal system, the geometry of the simplex



with obtuse angles made by g1, . . . , gM+1, and an
estimate of the maximal amount of uncertainty,
the feedback u∗ guarantees the sliding condition
(6) for every uncertain state fulfilling (5).

Suppose that there exist constants A∗, H such
that

|f [t, x, ui(t, x)]| ≤ A∗ and

|ϕ[t, x, ui(t, x)]| ≤ H (12)

for all t, x, i = 1, . . . , M + 1, H explicitly known
to the controller. Finally assume that for some
constants W0, W we have∣∣∣∣∂s(t, x)

∂t

∣∣∣∣ ≤ W0 and |Ds(t, x)| ≤ W (13)

everywhere.

Theorem 1

Suppose that (7), (12), (13) hold and

ac2 > (W0 + WH) E (14)

where

E = max

{∑
i∈I αi |gi|∣∣∑
i∈I αigi

∣∣ : αi ≥ 0, |α| = 1

}
,

I of M elements.

Then every uncertain state fulfilling (5) verifies
the sliding condition (6) for every t sufficiently
large.

Given the maximal amount H of uncertainty,
condition (14) requires sufficient control authority
about the nominal system in order to fix a > 0
sufficiently large, because of (7).

We sketch the proof of Theorem 1 in the (very
particular) case when s = s(x) only, and no
uncertainty acts on the system (hence W0 = 0 =
H).

Let s(y) = s[y(t)] fulfill (6) in a given time inter-
val. If y corresponds to u∗ we formally compute

sT (y)ṡ(y) = sT (y)Ds(y)ẏ =
∑
i�=h

αig
T
i gh (15)

≤ −c2
∑
i�=h

αi |gi| |gh| ≤ −ac2 |s(y)|

by (7). As well known, the differential inequality
(15) yields s[y(t)] = 0 for all sufficiently large
t. The flaw is that a Filippov solution is not
necessarily an almost everywhere solution, and a
more involved proof is needed, see (Bartolini et
al., n.d.).

Theorem 1 generalizes the convergence result of
(Bartolini et al., 1999) to control systems subject
to uncertainty and time-dependent sliding mani-
fold.

3. FIXED SIMPLEX CONTROL

A different but related control method deals with
a fixed simplex, i.e. the edges do not depend of t, x
and the dynamics, as follows. Suppose that, as in
most mechanical systems, the nominal dynamics
(1) are affine in the control variables. Moreover let
the nominal system be autonomous, namely

ẋ = A(x) + B(x)u (16)

with control constraint

|u| ≤ ρ (17)

K = M , and sliding manifold

s(t, x) = Cx + d(t) = 0. (18)

Let the control system be described by Lagrangian
coordinates q, so x = (qT , q̇T )T . Assume that
B = B(q) only and that deterministic uncertainty
acts on the nominal system (16) as

ẏ = A + ∆A + (B + ∆B)u.

Constants A0, B0 are known such that the un-
known dynamics fulfill

|∆A(t, x, u)| ≤ A0 and |∆B(t, x, u)| ≤ B0

for all t, x, u. Fix points u1, . . . , uM+1 ∈ RM such
that

|ui| = ρ, i = 1, . . . , M + 1 and

uT
i uh ≤ −c2 |ui| |uh| , i �= h

for some constant c �= 0. Then for every t ≥ 0,
|x| ≤ L with s(t, x) �= 0 we have

s(t, x) ∈ cone(ui : i �= h)

with the least possible h = h(t, x). Then define
the fixed simplex control law as

u∗(x) = uh.

Accordingly, the fixed simplex control law u∗ is
constant in every region of [0,+∞) × RN where
s(t, x) is interior to any cone(ui : i �= h).

We assume that ḋ in (18) is bounded, and that

G(q) = [CB(q)]−1 is positive definite (19)

for all q, |q| ≤ L.



Suppose that A, B are continuous and ∆A, ∆B
are Carathéodory functions. Then constants C1,
C2 are available to the controller such that for
every t, x, u

C1 ≥
∣∣∣∣GC

(
A + ∆A − 1

2
∂B

∂q
q̇Gs

)
+ Gḋ

∣∣∣∣ ,

C2 ≥ |∆B| ,

for each uncertainty ∆A, ∆B.

Theorem 2

Every uncertain state y fulfilling (5) verifies the
sliding condition (4) for every t sufficiently large,
provided that (19) and the following hold

C1 + C2ρ < mc2ρ2 (20)

where

m = min

{ ∑
i∈I αi∣∣∑

i∈I αiui

∣∣ : αi ≥ 0, |α| = 1

}
,

I of M elements.

Sketch of the proof.

Let

K0(x) = [CB(x)]−1 and

V (x) = s(x)T K0(x)s(x).

Then (formally) if y is any uncertain state corre-
sponding to u∗, we have

V̇ = sT (2K0ṡ − K0CḂK0s) =

= 2sT K0C [A + ∆A + (B + ∆B)u∗+

−1
2
ḂK0s

]
+ 2sT K0ḋ

and by (20) it turns out that

V̇ ≤ −ε
√

V

for some ε > 0, hence V (t) = 0, whence s(t) = 0
for all t sufficiently large. The rigorous proof is
given in (Bartolini et al., n.d.).

4. APPLICATIONS

We consider an important and specific area of
mechanical systems in which the control action
is provided by monodirectional devices such as jet
thrusters, tendons and contact forces. The simplex
control theory can be suitably applied to this kind

of systems and the control problem consists in re-
lating the generalized force of the lagrangian rep-
resentation of the mechanical system to a vector
of external forces and torques with either positive
or null components.

Consider the standard description of a mechanical
system

M(q)q̈ = C(q, q̇)q̇ + G(q) + τ

where q ∈ Rn, M(q) is the positive definite
inertial matrix, C(q, q̇)q̇ collects the centrifugal
and Coriolis terms, G(q) is the gravitational term,
and τ , the vector of the generalized forces, can be
expressed as

τ = HF , F = [F1, . . . ,Fk]T ,

Fi ≥ 0, i = 1, . . . , k,

where H = [H1, . . . ,Hk] is the matrix which
kinematically relates the external control action
Fi to the generalized force vector τ . The values
Fi and the matrix H must be designed in order
to implement the simplex control methodology.

After choosing the desired trajectories qd(t), de-
fine the sliding surface

s = [q̇(t) − q̇d(t)] + Γ[q(t) − qd(t)] = 0, (21)

Γ = diag(γi), γi > 0, i = 1, . . . , n,

and choose a set of vectors τ1, . . . , τn+1 of suitable
modulus which form a simplex in Rn and satisfy
the assumptions of Theorem 2.

If the columns of H for k = n + 1 are designed to
form a simplex in Rn then, for any τi, there exists
an index h, 1 ≤ h ≤ n + 1, such that

τi =
n+1∑

j=1 j �=h

λi
jHj , for suitable λi

j ≥ 0.

To generate τi it is sufficient to choose F i =[
λi

1, . . . , λ
i
(h−1), 0, λi

(h+1), . . . , λ
i
(n+1)

]T

.

If the columns of the kinematic matrix H form a
simplex satisfying the obtuse angle condition, then
we can choose

τi = λiHi, λi > 0;

this means that F has just one component differ-
ent from zero and the strategy is that of activating
just one actuator at a time.

A significant example of this kind of systems is
constituted by the AMADEUS gripper (AMADEUS
Project. European Commission Directorate Gen-
eral XII MAST III Contract: MAS3-CT95-0024),
see (Bartolini et al., 2000) for a detailed descrip-
tion.



Fig. 1. The AMADEUS gripper

The gripper is an underwater robotic manipulator
in which three fingers are arranged to form one
hand, fig. 1. Each finger is formed by three bellows
located at the vertices of an equilateral triangle
and the three bellows are connected to two plates.
The centers of the plates are connected by a rigid
link articulated by a cardan joint. The finger-tip
can span a portion of a spherical surface.

Any finger bellow is hydraulically connected to
a control bellow in a constant volume hydraulic
circuit. Any length variation of the control bellow
results in an opposite length variation of the finger
bellow. The actuator (an high bandwindth linear
motor of the voice coil type) acts on the control
bellow and remotely affects the finger motion with
negligible friction and no backlash.

The finger can be regarded as a cardanic joint
actuated by three bellows which act as tendons
(tendon-based actuation system).

Due to the design of each finger in the gripper, it
results that the forces F , exerted by the voice coil
motors, are directed along the axis of the system
and their application points form a simplex of vec-
tors. Hence, according to the previously described
procedure, the vectors τ of the torques applied to
the finger can be realized so to form a simplex of
vectors.

A mathematical model of the finger which de-
scribes the behaviour of the system with sufficient
precision within the working space, has the form

J T (q)AJ (q)q̈ = (22)

= N (q, q̇) + µ(q) + J T (q) [τ + η(q)]

where q ∈ R2 is the vector of the rotation angles,
A > 0 is the diagonal inertia matrix of the finger,
and J (q) is the jacobian matrix of the system
which can be easily found from the rotation ma-
trix of the cardan joint (Bartolini et al., 2000).
The term N (q, q̇) accounts for standard gravita-
tional Coriolis and centripetal torques while the

uncertainty terms µ(q) and η(q) are both associ-
ated to the nonlinear elasticity phenomena which
characterize the use of the bellows as actuation
system. In particular η(q) which is bounded in
the chosen working space is due to the torque
associated to the normal stress of any bellow and
is a nonlinear function of the rotation angles. The
term µ(q) is the bending torque of each bellow
which is a nonlinear uncertain function of the
rotation angles, due to the residual buckling phe-
nomenon located in the free portion of any bellow.
Constant upperbounds can be easily found in the
working space by simple experiments.

Given the desired trajectories qd(t), let us define
the sliding surface (21) such that, on s = 0, the
reduced system (the zero-dynamics) is arbitrarily
exponentially stable.

Since the Jacobian matrix J (q) is known and
not singular in the working space, the following
transformation of the sliding output s of (21) can
be performed:

S(t, q, q̇) = J (q)s(t, q, q̇).

Differentiating and remembering (22) it can be
found that

Ṡ(t, q, q̇, τ) = J̇ s + J ṡ =
[
ξ(t, q, q̇) + A−1τ

]
in which CB = A−1 is positive definite.

Consider three constant vectors τ1, τ2, τ3 which
form a simplex in R2 so that

3∑
i=1

µiτi = 0, µi > 0,
3∑

i=1

µi = 1.

Furthermore they verify

|τi| > |ξ| + ζ2, ∀i = 1, 2, 3,

where ζ2 is a constant depending on the chosen
working space, and the obtuse angle condition

τT
i τj < −c2 |τi| |τj | , ∀i, j = 1, 2, 3.

According to the previously introduced control
methodology, the simplex control switching logic
guarantees the achievement of the control goals.

In fact the simplex vectors τi partition the plane
in three non-overlapping cones Qi such that

S ∈ Qi if S = λjτj + λkτk,

λj , λk ≥ 0, j, k �= i,

and the control vector is chosen according to the
following switching logic:

if S ∈ Qi set τ∗ = τi



that is, if S(t) belongs to a cone Qi positively
spanned by the two vectors τj and τk, with j, k �=
i, then τi is chosen as control action.

The control vector τ is given by τ = HF , where,
due to the design of the system, the matrix H
turns out to be

H =


 1 −1

2
−1

2

0
√

3
2

−
√

3
2




and the vector F = [F1,F2,F3]
T collects the

forces Fi exerted by each one of the three control
bellows.

The constant vectors τi, i = 1, 2, 3, of the desired
simplex can be obtained in a natural way, it is
sufficient to activate just one voice coil motor at
a time on the basis of the knowledge of the region
to which S = J s belongs.

Future work regarding the application of the pro-
posed control methodology to a wider class of
mechanical and robotic systems is in progress.
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