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Abstract: This paper considers an extended version of the Capacitated Arc Routing 
Problem (E-CARP), obtained by adding realistic constraints like prohibited turns to the 
basic CARP. Two integer linear models are presented, a mono-objective version and a bi-
objective one. A cutting plane method for the first version provides either an optimum or 
a lower bound that are used to benchmark a genetic algorithm on 11 CARP instances 
from the literature, enriched by additional constraints. The results prove the GA is nearly 
optimal for these networks with up to 16 nodes and 52 arcs. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
The basic Capacitated Arc Routing Problem (CARP) 
is defined in the literature on an undirected network 

),( EVG = with a set V of n nodes and a set E of m 

edges. A fleet of identical vehicles of capacity Q is 
based at a depot node s. A subset R of required edges 
must be serviced by a vehicle. All edges can be 
traversed any number of times. Each edge ),( ji  has a 

traversal cost 0≥ijc  and a demand 0≥ijr . 

 
The CARP consists of determining a set of vehicle 
trips of minimum total cost, such that each trip starts 
and ends at the depot, each required edge is serviced 
by one single trip, and the total demand handled by 
any vehicle does not exceed Q. The cost of a trip 
comprises the costs of its serviced edges and of its 
intermediate connecting paths. Many applications 
occur in road networks: urban waste collection, snow 
removal, sweeping, gritting, etc. Demands are usually 
amounts to be collected along the streets (urban 
waste) or delivered (salt in winter). Costs are often 
distances or travel times.  
 
The undirected version concern roads whose both 
sides can be serviced during one traversal and in any 
direction, a common situation in quiet suburban areas. 
A directed version is sometimes studied: each arc is 
one street (or one side of street) with an imposed 
direction for service. Note the difference between an 
edge ),( ji  and two opposite arcs ),( ji  and ),( ij : 

both represent a 2-way street but each is serviced 
separately for the pair of arcs. The undirected and 
directed versions are NP-hard, even in the single-
vehicle case called Rural Postman Problem.  
 
In applications like urban waste collection, the street 
network is obviously mixed (with edges and arcs) and 
some turns are not allowed. Moreover, the traversal of 

a street for service takes longer than a deadheading 
traversal, and speed limits can give different times for 
the two directions of an edge. The E-CARP denotes a 
CARP with the following complications: 

� mixed network 
� each arc or edge ),( ji  has a deadheading cost 

ijc distinct from its servicing cost ijw  

� prohibited turns. 
 
 

2. INTEGER LINEAR FORMULATION 
 
Our formulation generalises a model proposed by 
Golden and Wong in 1981 for the basic CARP. Even 
this early model has never been evaluated, due to the 
lack of solvers powerful enough at that time. 
 
 
2.1  Input data 
 
The mixed network is coded as a directed multigraph 

)A,V(G = . V is a set of n nodes with a depot at node 

1. A is a set of m arcs with each edge coded as two 
opposite arcs. Parallel arcs may exist from a node i to 
a node j, so arc indexes from 1 to m are used instead 
of the ambiguous notation ),( ji . Each arc u has a 

traversal cost uc and a demand uq . We assume the 

required arcs are the ones with non-zero demands. 
Such arcs have also a servicing cost uw . A fleet of K 

identical vehicles of capacity Q is based at the depot. 
All costs, demands and capacities are non-negative 
real numbers. No demand exceeds Q, i.e. Q ≥ max 
{qu | u∈A}. For tackling the mixed graph and 
prohibited turns, we need also for each arc u = (i,j): 

� S(u) the set of adjacent arcs v = (j,k) that a vehicle 
may traverse immediately after u, 

� P(u) the set of adjacent arcs v = (k,i) that a vehicle 
may traverse immediately before u, 
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� Inv(u) the index of the opposite arc. 
 
S(u) and P(u) are useful to describe many types of 
constrained turns that can correspond to a road sign, 
an excessive turning circle, a too narrow street: if for 
any reason it is forbidden to turn from arc u to arc v, v 
is removed from S(u) and u from P(v). Inv(u) is 
required to distinguish between a genuine arc and a 
pair of arcs coding an edge: if two arcs u and v 
represent the same edge, then Inv(u) = v and 
Inv(v) = u. If u and v are two opposite arcs requiring 
service separately, then Inv(u) = Inv(v) = 0.  
 
 
2.2  Decisional variables 

�

p
vux , number of times vehicle p traverses arc v 

immediately after arc u 

�

p
ul  binary variable equal to 1 iff arc u is serviced 

by vehicle p. 
 
The initial model proposed by Golden and Wong uses 
binary variables upx  equal to 1 if and only if  vehicle 

p traverses arc u. These variables are binary thanks to 
a theorem for the undirected CARP, stating that there 
exists an optimal solution in which no trip traverses 
the same edge more than once, in a given direction. 
Unfortunately, this property does not hold for directed 
or mixed graphs and the variables become integral. 
 
Moreover, the x variables now require two subscripts 
to handle prohibited turns correctly. They need to be 
defined only for permitted pairs of consecutive arcs 
(u,v). In real road networks, each arc (street) is 
followed by 4 arcs on average, including a possible 
U-turn. There are then 4m permitted pairs on average, 
even less in case of prohibited turns. The variables l 
can be defined only for the r required arcs. In 
practice, the total number of variables is )4( rmK + .  
 
 
2.3  The E-CARP model 
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The three main terms in the objective function (1) 
correspond to the total servicing cost of the required 
arcs, the total traversal cost of the required arcs, and 
the total traversal cost of non-required arcs. In each 
flow constraint (2), the number of times vehicle k 
enters arc u must be equal to the number of times it 
leaves u. In the example of figure 1, the values on 
each arc are the number of traversals by vehicle k. We 
see that arc u is entered and left four times. 
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Fig. 1. Flow constraints on arc u. 
 
Constraints (3) mean that each required true arc (i.e., 
not an edge) of the original network must be serviced, 
and by one single vehicle. Constraints (4) concern 
required edges. When two arcs u and Inv(u) code the 
same edge, only one of them must be collected, and 
by one single vehicle. The constraints (5) prevent the 
required arcs from being serviced by a vehicle when 
the vehicle does not traverse them. 
 
Constraints (6) limit the total amount of demand 
serviced by one vehicle to its capacity. Constraints 
(7)-(8) prevent subtours, i.e. invalid cycles not 
connected to the depot. Contrary to the Travelling 
Salesman Problem, subtours may cross a node more 
than once and require more complex elimination 
constraints. In fact, we have extended the constraints 
proposed by Golden and Wong to tackle the mixed 
graph and prohibited turns. The total number of 
constraints (without positivity and bound constraints) 
is )1()12( ++++ KrnmK . For street networks, we 

have nm 4≈ and )1()19( +++ KrnK  constraints. 
 
 
2.4  Alternative subtour elimination constraints 
 
Subtours can also be eliminated with constraints (7'). 
They prevent the formation of subtours for any non- 
empty subset of nodes E that does not contain the 

depot. Due to the huge number of subsets ( 12 1 −−n ), 



     

such a formulation cannot be handled directly by a 
linear programming software.  
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3. A BI-OBJECTIVE EXTENSION  
 
In municipal waste collection, the nominal capacity 
specified by the manufacturer can be considered as a 
soft constraint for vehicles with compactors. 
Depending on the kind of waste, overloads reaching 
10% are possible. Therefore, solutions with 
overloaded trips must not be excluded since they can 
be acceptable in practice. This section shows how to 
adapt the previous model for tackling two objectives: 
the overloads and the total cost of the trips. 
 
 
3.1 Bi-objective optimization 
 
The objective function to be minimized is now 

2211 .. HHH αα +=  where: 

� 1H  is the total or the maximal overload 

� 2H  is the total cost of the trips  

� 2α  and 1α  are given weights representing the 

relative importance of 1H  and 2H . 
 
Obviously, the main objective in practice is to find a 
capacity-feasible solution or, if not possible, one with 
minimal overloads. In the set of capacity-feasible 
solutions, the objective is to achieve the minimum 
total cost. If capacity-feasible solutions do not exist or 
cannot be computed in an acceptable computational 
time, priority must be given to minimizing overload.  
 
This hierarchical bi-objective optimization problem 
can be solved by setting the values of 1α  and 2α  

such as ).max().min( 2211 HH αα > . For instance, if 

the total cost is always smaller than 1000 and if 
overloads are integers, well scaled values of H are 
obtained with 10001 =α and 12 =α . An objective 

function value of 11071 means a total overload equal 
to 11 and a solution cost equal to 71. 
 
 
3.2 Minimizing the  total overload 
 
The model of section 2 is in fact the version reduced 
to objective 2H . We just present the modifications 
required in the objective function and in the 
constraints for tackling 1H . The overload Extra(p) of 
vehicle p and the total overload T can be defined as:  
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A linear formulation is possible by defining Extra(p) 
as a new positive variable for each vehicle p and by 
rewriting constraints (6) as follows: 
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The new bi-objective function is obtained by 
multiplying (1) by 2α  and by adding the weighted 

sum of overloads: 
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3.3 Minimizing  the maximum  overload  
 
The maximal vehicle overload is:  ))(( pExtraMax

p
. 

It can be minimized by replacing constraints (6) by 
(6') like in 3.2 and by defining a positive variable Z 
playing the role of an upper bound on overloads. The 
overloads are actually bounded using constraints (6"): 
 

ZpExtraKp ≤=∀ )(:1)"6( �  
 
The bi-objective function is obtained by multiplying 
(1) by 2α  and by adding Z×1α : at the optimum, Z 

will be equal to the maximum overload.  
 
 
 

4. CUTTING PLANE ALGORITHM 
 
4.1 Introduction 
 
Commercial solvers can solve only small instances of 
the integer linear models proposed in section 2, 
especially the version (denoted P in the following) 
with the exponential number of subtour elimination 
constraints. However, a huge number of constraints 
does not mean they are all active in an optimal 
solution. This allows an iterative approach whose the 
principle was first introduced by Dantzig (Dantzig et 
al., 1954) for the travelling salesman problem.  
 
The idea is to try to solve a relaxation P' of P without 
subtour elimination constraints. The constraints of P 
violated in the optimal solution of P' are added to P'. 
Such linear constraints added to the program at each 
iteration are called cutting planes. The process is 
iterated until the optimum found for P' is feasible for 
P. Such an optimum is also optimal for P. A cutting 
plane algorithm is expected to reach the optimal 
solution using only a partial description of P. 
However, in the worst case, it can perform an 
exponential number of iterations if all constraints 
initially discarded need to be reintroduced. 
 



     

4.2  Cutting plane algorithm (CPA) for the E-CARP 
 
We need to define for the cutting-plane algorithm: 

� the constraints defining P' (relaxation of P) 
� a procedure identifying the constraints of P 

violated in an optimal solution S for P'. 
 
The  relaxation of P. Initially, P' is the integer linear 
program obtained by removing from P all subtour 
elimination constraints (see section 2).  
 
Identifying subtours in S. A valid solution S to P has 
up to K cycles, all connected to the depot. Invalid 
solutions contain subtours. The set X of subtours can 
be built with a graph search algorithm (see for 
instance Cormen et al., 1990, for an implementation). 

Breaking subtours. Any subtour in X is performed by 
a vehicle k on a subset E of nodes. It will not reappear 
in the subsequent resolutions of P' if we add to P' the 
constraints (7') for subset E and vehicle k. 

 
 

4.3  Outline of CPA 
 
Figure 2 gives an outline working directly on P (no 
separate variable for P') and based on three functions: 

� Solve(P) solves an integer linear program P to 
optimality. Any commercial or freeware linear 
programming package can be used.  

� Subtours(S) runs a graph search algorithm on the 
solution S of P to return its set X of subtours. 

� Alter(P,X) adds to P the constraints to forbid all 
subtours of X in subsequent iterations. 

 
The CPA performs its iterations until: 
� S has no subtour (S is then optimal for P). 
� a stopping criterion holds (e.g. maximal number 

of iterations or computational time). 
 
This algorithm can solve small instances optimally. It 
can be time-consuming for larger instances and only 
lower bounds can be obtained. Even in that case, the 
CPA is useful to evaluate heuristics. 
 

Cutting plane algorithm (CPA) 
Input: 
1. P the E-CARP problem 
Output: 
1. S the E-CARP solution 
External functions: 
1. Solve(P) returns the integer solution of P 
2. SubTours(S) returns the set of subtours of S that do not contain the depot 
3. Alter(P,X) adds to P the required constraints to forbid subtours in X 
Local variables: 
1. X the set of subtours not connected to the depot 
Algorithm: 
1. Remove subtour elimination constraints from P 
2. While not stop Do 
  2.1. S ← Solve(P ) 
  2.2. X ← SubTours(S ) 
  2.3. P ← Alter(P,X)  
3. End Do 
4. Return S 

Fig. 2. Cutting plane algorithm for the E-CARP 

 
5. A LIBRARY FOR THE E-CARP 

 
Two sets of instances were proposed for the basic 
CARP by DeArmon (1981) and by Belenguer and 
Benavent (1997). All edges in these instances require 
service. The files can be downloaded via  Internet at 
address: ftp://matheron.estadi.uv.es/pub/CARP. Since 
no such benchmarks are available for our E-CARP, 
we use some DeArmon's instances and convert them 
into E-CARP instances by adding new constraints. A 
library composed of 11 instances based on 
DeArmon's files gdb1 to gdb5 and gdb14 to gdb19 is 
proposed in (Lacomme et al., 2001b). The modified 
files have a name ending with "e" e.g., gdb1 gives the 
E-CARP instance gdb1e. They can be obtained by 
sending an e-mail to the authors. 
 
 

 
6. COMPUTATIONAL EVALUATION OF CPA 

 
6.1  Results 
 
The testing is done on a 600 MHz PC (Windows 95), 
using the Xpress-MP linear programming software 
(http://www.dashoptimization.com). Our program is 
written in Delphi 5 and calls Xpress for adding 
constraints. Table 1 shows the results. The variables 
and constraints concern the first relaxed program P'1. 
Six problems are solved to optimality (asterisks). In 
the other cases (in brackets), no integer solution is 
obtained and the costs in brackets correspond to the 
continuous relaxation of P'1. Such values are still 
useful as lower bounds for heuristic algorithms. 
 

 



     

Table 1. Solutions obtained with the cutting plane algorithm CPA 

Name Nodes x arcs Variables Constraints Solution cost 

Gdb1e 12x44 1441 998 311*  
Gdb2e 12x52 2473 1766 (379) 
Gdb3e 12x44 1486 1123 293* 
Gdb4e 11x38 937 742 297* 
Gdb5e 16x52 2257 1664 (422.5) 
Gdb14e 7x42 2311 1001 135* 
Gdb15e 7x42 2153 1090 44* 
Gdb16e 8x56 3561 2270 (119) 
Gdb17e 8x56 3561 2265 (90) 
Gdb18e 9x72 5901 2421 (87) 
Gdb19e 8x22 481 333 69* 

 
 
6.2  Example of solution details for problem gdb19e 
 
Figure 3 shows the network in which each arc has an 
index and (in brackets) a deadheading cost, a service 
cost and a demand. Vehicle capacity is 27. In figures 
4 to 6, the arcs labelled vk are traversed by vehicle k 
and dashed lines are deadheading arc traversals. In 
the sequel P'i denotes the relaxation of P at iteration i. 
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Fig. 3. Network of problem Gdb19e 
 
Iteration 1. The solution (figure 4) costs 69 and 
contains two subtours with arcs (7,3), (3,7) and (6,8), 
(8,6). Constraints for breaking these subtours are 
added to P'1 giving P'2. 
 

1

4

2

3

5

6

7

8

V1

V1

V1

V1

V1

V2

V2

V2

V2

V2

V2

V1

V1

V2
V3

V3

 

Fig. 4. First solution with two subtours 
 
Iteration 2. The solution of figure 5 costs 69 and 
contains one subtour (2,3), (3,7), (7,3), (3,2). P'2 is 
modified to definitely prevent this subtour. 
 
Iteration 3. The resolution gives a solution of cost 69 
without subtours (figure 6). This solution is also 
optimal for P and the algorithm may be stopped. 
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Fig. 5. Solution of P'2 
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Fig. 6. Optimal solution for gdb19e 
 
 
This solution has 3 trips with the following node lists: 

� vehicle 1: 1,6,8,6,1 
� vehicle 2: 1,4,2,7,2,1 
� vehicle 3: 1,2,3,7,2,5,1 
 
The evolution of the objective function during the 
resolution process is indicated below. 

� Resolution of P'1: the branch-and-bound algorithm 
of Xpress finds two integer solutions costing 71 
and 69, the last one with two subtours.  

� Resolution of P'2: Xpress finds again two integer 
solutions with costs 71 and 69, but this time there 
is only one subtour in the optimal solution. 

� Resolution of P'3: Xpress finds four successive 
integer solutions with costs 77, 75, 71 and 69. The 
algorithm stops because the last one has no 
subtour: it is also an optimal solution to P. 

 
 



     

7. THE HYBRID GENETIC ALGORITHM 
 
Lacomme, Prins and Ramdane-Chérif have designed 
a very efficient hybrid genetic algorithm (HGA) for 
the basic undirected CARP (Lacomme et al., 2001a).  
This HGA outperforms the best metaheuristics 
previously published, including a sophisticated tabu 
search (Hertz et al., 2000), and breaks several open 
instances of the literature. The optimality can be 
proven on many instances, thanks to a tight lower 
bound designed by Belenguer and Benavent (1997). 
 
Roughly speaking, each chromosome used by the 
HGA is a solution coded as a sequence of arc indexes, 
without trip delimiters. Such a sequence is evaluated 
by a tour splitting algorithm that cuts it optimally into 
trips. The HGA searches the sequence space to find 
the optimal sequence, i.e. the one giving an optimal 
CARP solution when evaluated. 
 
The HGA works with a small population of distinct 
solutions. The solutions obtained by three good 
heuristics are included: Path-Scanning, Augment-
Merge (both proposed by Golden and Wong, 1981) 
and Ulusoy's heuristic (Ulusoy, 1985). Children are 
generated using the classical OX crossover. The GA 
is hybrid because a local search is used as a mutation 
operator. The efficiency comes from the high 
mutation rate (10 to 20%). Such rates are possible 
without a premature convergence of the GA, thanks 
to the distinct solutions.  
 
We have extended the HGA for tackling the E-CARP. 
For instance, forbidden turns are tackled by 
precomputing  an arc-to-arc distance matrix D. D(u,v) 
is the minimal cost of the paths from arc u (excluded) 
to arc v (excluded), taking into account forbidden 
turns. This matrix can be computed by adapting 
Dijkstra's algorithm (Cormen, 1990). 
 
Table 2. Comparison between CPA and HGA costs 
 
Name CPA cost HGA cost Deviation % 
Gdb1e 311* 335 7.71 
Gdb2e (397) 400 0.76 
Gdb3e 293* 293* 0 
Gdb4e 297* 297* 0 
Gdb5e (422.5) 451 6.74 
Gdb14e 135* 135* 0 
Gdb15e 44* 44* 0 
Gdb16e (119) 129 8.40 
Gdb17e (90) 91 1.11 
Gdb18e (87) 111 27.59 
Gdb19e 69* 69* 0 
 
Table 2 compares the cutting plane algorithm CPA 
with the HGA on the 11 E-CARP instances. The 
HGA uses a population of 30 solutions, a mutation 
rate of 10%, and stops after 40,000 crossovers. It 
retrieves 5 optimal solutions. Its average deviation 
from CPA costs is 4.75%. Note that HGA is perhaps 
also optimal when CPA provides just a lower bound 
(e.g. Gdb2e). The CPU time per instance is less than 
2 minutes on a 600 MHz PC with Windows 95. 
 
 

8. FINAL COMMENTS 
 
This paper presents an extended version of the CARP 
and two integer linear programs, one for the single 
objective case, the other one for a bi-objective 
version. The first model is exploited by a cutting 
plane algorithm tested on a set of 11 instances. The 
cutting plane is able to solve instances up to 44 arcs 
to optimality. The hybrid GA proposed by (Lacomme 
et al., 2001a) is enhanced for solving the E-CARP. 
The HGA is very efficient since it retrieves all the 
optimal solutions found by the CPA and displays on 
larger instances small deviations from the lower 
bound provided by the CPA. Several extensions to 
this work are already envisaged, for instance: 

� enhancing the CPA for solving larger instances 
� calling the CPA in the HGA to solve sub-

problems optimally. 
� using a truncated HGA to provide tight upper 

bounds in a branch-and-cut algorithm. 
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