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Abstract: In case where strong a priori knowledge about the object being analyzed is
available, it can be embedded into the formulation of the snake model. When prior
knowledge of shape is available for a specific application, information concerning the
shape of the desired objects can be incorporated into the formulation of the snake
model as an active contour model. This active contour model can have more robust
tracking performance for the weak edge cases because the snaxels of active contour
model on weak edges can estimate the likelihood from a priori knowledge about
target’s shape and the relations with neighbor snaxels. In this paper we show Five
points algorithm can be applied to design invariant energy and the effectiveness of
the snake designed on this new concept in more robust tracking for moving object in
visual space than the standard snake.
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1. INTRODUCTION

Deformable models have been used extensively
in image analysis, especially in medical or bi-
ological imaging applications. Especially active
contour models have been developed as useful
tools for segmenting and tracking rigid or non-
rigid deformable objects. Snake, one of the ac-
tive contour models, was introduced by Kass in
1987(Kass et al. 1988). They defined snake en-
ergies such as internal energy, image energy and
external energy. Segmentation and tracking can
be done by energy minimization process about
these energy. They tried to solve optimization
problem for energy minimization by variational
approach. Amini presented dynamic programming
for finding minimum points(Amini et al. 1990).
Leymarie tried to segment and track deformable
objects like amebas and proved the convergence
of snake’s motion(Leymarie et al. 1993). Yang
tried to track the contours of a human face for
recognition of human’s intentions and emotions

by computer vision technique. Xu used snake to
model three dimensional objects(Xu et al. 1998).

Visual tracking means successive segmentations
of target object’s boundaries through sequential
image streams. Snake’s segmentation process is a
kind of process related with energy minimization.
Snake energies have to be defined to have the
minimal values on target’s boundaries. If the min-
ima of energy surface can be found successfully
through energy minimization process, snake can
find the object’s boundary. This is the segmen-
tation process. After the segmentation process,
next new image is captured to vision systems.
When the variances of the object’s location and
configuration between two sequential images are
small, snake can also make segmentation for this
new image from the results of the former stage
through process of energy minimization. This is a
tracking process of snake.
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By using the results of snake’s tracking we can
get the corresponding points between two subse-
quent images. The corresponding points are re-
lated with the extrinsic parameters that are the
translation vector, T, and the rotation matrix, R
about camera motions. So visual navigation can
be implemented by using the tracking results of
deformable models operating about the feature
shapes in sequential images.

Snaxels, that are snake’s nodes, of the standard
snake can move individually based on the values
of snake energy. There may be weak edges around
target objects generated by the changes of illumi-
nation conditions, reflectance of surfaces and the
other reasons. The changes of illumination condi-
tions may always exist in real environment. For
the standard snake the snaxels on the segments of
weak edges may have poor tracking performance
because the values of image energy on those points
may be not low. Therefore at that instance the
snaxels on weak edges may find the other local
edges that are not on the boundaries of target.
Moreover the tracking failure at one instance is
strongly linked with overall tracking performance
in the tracking based on deformable models.

In case where strong a priori knowledge about the
object being analyzed is available, it can be em-
bedded into the formulation of the snake model(Ip
et al. 1998). When prior knowledge of shape is
available for a specific application, information
concerning the shape of the desired objects can
be incorporated into the formulation of the snake
model as an active shape model(ASM). This ac-
tive contour model can have more robust tracking
performance for the weak edge cases because the
snaxels of active contour model on weak edges
can estimate the likelihood from a priori knowl-
edge about target’s shape and the relations with
neighbor snaxels. This active shape model can be
applied to recover the motion of the camera given
a sequence of images.

2. DESIGN OF SNAKE ENERGIES

There are several energy terms in active con-
tour models(Kass et al. 1988) such as internal
energy, image energy and external energy. In this
paper continuity energy, smoothness energy and
image energy are selected as basic energy terms
explained in (Trucco et al. 1998).

2.1 Continuity Energy

Continuity Energy, Econt, prevents the formula-
tion of clusters of snaxels. Denoting d̄ as a mean
distance between two adjacent snaxles, we can
express Econt as follows:

Econt = ‖pi − pi−1‖2 (1)

where pi, i = 1...N is i-th snaxel of a chain of N
image points on the contour.

2.2 Smoothness Energy

Smoothness energy has the function to make con-
tour smooth by penalizing high contour curva-
tures. Because the curvature is well approximated
by the second derivative of the contour, Ecurv can
be defined as

Ecurv = ‖pi−1 − 2pi + pi+1‖2. (2)

2.3 Image Energy

Gradient operation for calculating image energy
can be executed by the convolution of image with
a Sobel operator (Jain 1989). The operation can
be expressed as follows :

< U,H >m,n = u(m,n) ⊗ h(−m,−n)

=
∑

i

∑
j

h(i, j)u(i + m, j + n)(3)

where U is an image buffer, H is a p × p
Sobel mask, and (m,n) is an interested location
coordinate.

A Sobel mask is composed of two orthogonal
operators. The equation (4) is a mask for the
gradient along the x-axis, and the equation (5)
is a mask for the gradient along the y-axis. The
magnitude of the gradient can be obtained by
applying convolving operations with these masks
as follows:

h1 =


−1 0 1
−2 0 2
−1 0 1


 (4)

and

h2 =


−1 −2 −1

0 0 0
1 2 1


 . (5)

3. DESIGN OF INVARIANT ENERGY

3.1 Motivation

There may be two kinds of problems in snake’s
tracking. The existence of weak edge is the first
one. Some portions of target boundaries may
not be strong edges in the stream of sequential
images. So snake energies in weak edges may have



lower values and this may guide snake to tracking
failures because a failure in one image frame
means total tracking failure in snake’s tracking.
Second one is the confusion in the case of multiple
objects. There may be the other objects in images.
Snake may be confused to track which object and
therefore may track the other object near the
target if the edges of the other’s are stronger than
the target’s. These two problems are explained in
figure 1.
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Fig. 1. The concept of two problems in Snake’s
tracking.

3.2 Invariant Energy

To overcome two tracking problems discussed ear-
lier we introduce invariant energy term, Einv

which give the contour information of target to
snake. So in the existence of weak edge, the other
object near target and noises snake can have
somewhat robust characteristics. Invariant energy,
Einv is defined in equation (6) as follows :

Einv(v(s)) = ω(s) · exp(L/σ) (6)

where ω and σ are tuning parameters and L
means the variation ratio of invariant values. The
variation ratio of invariant values, L is defined as

L = (|I(k) − I ′(k)| /I ′(k)) ∗ 100 (7)

where I(k) means invariant value of current image
at node k and I’(k) means invariant value of the
previous image at the same node k.

Invariant value I(k) is calculated by Five point
algorithm is defined as

I = det(X5X1X4) · det(X5X2X3) (8)

/(det(X5X1X3) · det(X5X2X4))

where Xi is a pixel coordinate expressed as Xi =
(xi, yi, 1)T . Above equation (9) was suggested by
Roh and Kweon (Roh et al. 1998). By using
this equation we can incorporate object’s contour
information to snake. The concept of calculation
of this invariant values on the contour is explained
in figure 2.
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Fig. 2. The concept of calculation of invariant
values on the contour : (a) A contour (b) The
invariant profile for this contour.

The parameter ω should be expressed as equation
(9) because the differences are big in five points
simultaneously due to the characteristics of the
Five points algorithm for one node which miss
tracking the boundary of target as follows:

ω(i) =
{

0 if D(i) ≥ DTH

ω(i) otherwise (9)

where Dth is a threshold value and D means a
measure of the position difference of snake’s node
between two frames expressed as follows:

D(i) = ‖Xi − X ′
i‖2 . (10)

This condition is needed to only consider the large
snake’s node variation case. Therefore invariant
energy values increase exponentially along the
variation of invariant values between two succes-
sive images.

4. SIMULATIONS

4.1 Simulation Results for Synthetic Images

Figure 3 is a simulation result of the basic snake
for a case of the existence for two objects. There



is the other object near target and one node fails
tracking because the edge of the other object is
stronger the target’s one.
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Fig. 3. The simulation result of the basic snake.

Figure 4 is a simulation result of the proposed
snake for the same case. In this simulation one
node tracks the other object in initial frames.
When the value of D is large than DTH at the
15-th frame the snake’s invariant energy, Einv

increases abruptly and the split node can escape
from the local minimum point. So robust tracking
can be done by this scheme.
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Fig. 4. The simulation result of the proposed
snake.

4.2 Simulation Results for Tracking Face-like Objects

There are image sequences in which an face-like
object is moving to the left direction in image
space in figure 5.
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Fig. 5. Tracking of face-like object : (a) Initial
position. (b) Final position.

In figure 6 the segmentation result is explained.
Initially snake should be placed around target
object. So in this case roughly placed snaxels
contract into the face-like object and finally find
the exact boundaries of the target in figure 6
(a). In figure 6 (b) the extracted snaxels on that
contour are expressed in image space.
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Fig. 6. Segmentation result : (a) Segmentation
mode. (b) Extracted contour.

There is a comparison between the positions of the
model contour and the affine transformed one to
the 12-th image in figure 7 (a) in which the snaxels
in a model and the affine transformed contour
are labelled as squares and stars, respectively.
For the comparison of invariant values between
two contours an affine transform matrix between
them should be found by an optimization method
explained in (Ip et al. 1998). In figure 7 (b) the two
contours in the 12-th image and the affine trans-
formed model are expressed labelled as squares
and stars, respectively. The comparison in invari-
ant values for these two contours is explained in
figure 8.

5. CONCLUSIONS

In cases where strong a priori knowledge about the
object being analyzed is available, it can be em-
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Fig. 7. Affine Transform : (a) Two contours of
model and transformed contour to the 12-th
one. (b)Affine transformed contour of model
and the 12-th one.
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Fig. 8. Affine Transform : (a) Two contours of
model and the 12-th image. (b) Comparison
of invariant values for these two contours.

bedded into the formulation of the snake model.
When prior knowledge of shape is available for
a specific application, information concerning the
shape of the desired objects can be incorporated
into the formulation of the snake model as an
active contour model. In this paper we show Five
points algorithm can be applied to design invari-
ant energy. This active contour model can have
more robust tracking performance for the weak
edge cases because the snaxels of active shape
model on weak edges can estimate the likelihood
from a priori knowledge about target’s shape and
the relations with neighbor snaxels. This active
shape model can be applied to recover the motion
of the camera given a sequence of images.
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