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Abstract: In this paper we propose a parametric and a non-parametric identification
algorithm for dynamic errors-in-variables model. We show that the two-dimensional
process composed of the input-output data admits a finite order ARMA representa-
tion. The non-parametric method uses the ARMA structure to compute a consistent
estimate of the joint spectrum of the input and the output. A Frisch scheme is then
employed to extract an estimate of the joint spectrum of noise free input-output
data from the ARMA spectrum, which is used to estimate the transfer function.
The parametric method exploits the ARMA structure to give consistent estimates of
the system parameters. The performances of the algorithms are illustrated using the
results obtained from a numerical simulation study. ©IFAC 2002
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1. INTRODUCTION

Identification of linear dynamic systems from
noise—corrupted input and output measurements
is often referred as a dynamic “errors—in—variables”
problem. Several authors have considered this
problem with different approaches. For exam-
ple, we can distinguish between time—domain
(S6derstrom and Stoica, 1989), and frequency-
domain methods (Pintelon and Schoukens, 2001),
approaches exploiting deterministic signals (e.g.
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periodic inputs (Forsell et al., 1999)) or stochastic
processes (Soderstrom, 1981). When only second-
order statistics are exploited it is a well-known
result that, in general, the identification of errors—
in—variables models cannot admit a single solution
(Anderson and Deistler, 1984).

In this paper we shall show that the two-
dimensional process composed of the input-output
data admits an ARMA representation of fi-
nite order, which we use to construct a para-
metric and a non-parametric way of identify-
ing the SISO errors-in-variables model. The non-
parametric method combines the ARMA spec-
trum with the ideas of the Frisch scheme (Beghelli
et al., 1990). A similar attempt can be found



in (Beghelli et al., 1997), where a periodogram
estimate of the joint input-output spectrum is
used. The algorithm presented in this work out-
performs the method introduced in (Beghelli et
al., 1997). The parametric method, which exploits
the ARMA structure directly, will be shown to
yield the best result. For a detailed mathematical
description of the classes of observationally equiv-
alent systems in the framework of this work, we
refer the reader to (Scherrer and Deistler, 1998).

2. PROBLEM STATEMENT

Consider the following system with noise—free
input up(t) and the undisturbed output yo(t),
linked through the linear difference equation

A(g7") yo(t) = B(g™") uo(2), (1)
where A(g™!) and B{(g~ ) are polynomials of the
type

A(q_l) = 1+a1q—1+"'+anq_n (2)
BlgYy=biqg '+ +bag™ '

and ¢! is the backward shift operator, i.e.

g tz(t) = z(t — 1). It is not restrictive to as-
sume that the polynomials A(g~!), B(¢~!) have
equal degree n, which represents the order of the
system. It is further assumed that A(z) has all
zeros outside the unit circle and has no factor in
common with B(z).

We assume that the observations are corrupted by
zero mean, mutually independent, white measure-
ment noise sequences 4(t) and §(t), at the input
and output, respectively. Therefore, the available
signals are of the form

u(t) = uo(t) + a(t) 3)
y(t) = yo(t) +5()

The variances of 4(t) and #(t) are A, and A,
respectively. The true input up(¢) is an ARMA
process, i.e.

-1
S, @)

where e(t) is a zero mean white noise with vari-
ance A\, and

UO(t) =

Cl@)y=1+ecg +-+emg ™ 5)
DigY)=14+dig '+ - +dng™ "

uo(t) is independent of both #(t) and g(t). This is
a mild assumption since a stationary process can
be accurately approximated as an ARMA process
by properly adjusting m, {¢;}™, and {d;}2,. The
problem is to determine the transfer function
~1y _ Blg™)

6™ = 1 (©)
and the variances A, and A, of the noise se-
quences, given the available measurements {u(t)}i,

and {y(t)}tji-l

3. MODELING OF THE DATA
Let us define the two dimensional process

T "

2(t) = [3(®) u()]” = 20(t) +3(1), ()
where zg(¢) and Z(t) denote the respective noise-
free and noisy part of z(t) given by

zo(t) = [v0(t) uo(t)]”,
a(t) = [5(t) a(®)]” -

It is straightforward to derive that the spectrum
P, (w) of z(t) at frequency w is given by

P, (w) = Dy, (w) + B3(w)
=[F] 16 11 2w+ | 1

The idea here is to extend the frequency domain
Frisch scheme in (Beghelli et al., 1997) using
a black-box parametric modeling of the spectral
density ®,. If the spectral density matrix &, is
known, and an appropriate diagonal matrix is
subtracted, then one would get a rank 1 posi-
tive semidefinite matrix, corresponding to the first
term of (8), for all frequencies w. In case the de-
composition as in {(8) can be carried out, the first
term would easily lead to estimates of the transfer
function G(e%) and the true input spectrum ®,,.

As a starting point, it is required to estimate
®,. First, to show that z(t) admits an ARMA
representation, let us introduce

Alg)=I+Ag +- -+ Agq®
_[A@™) -B@™
- [ 0 D ] : ©)
It is straightforward to see that
1y, — [AW@EE) — Bayat)
Ag Hz(t) = [C(Z'l)z(t) + D(Z‘I)Z(t)](lo)

is clearly a moving average process in the sense
that its covariance function vanishes after max(m,n)
lags. Therefore, z(t) admits the ARMA represen-
tation

A(g™)z(t) = T(g V)e(t), (11)
where T'(¢g™!) is a 2 x 2 matrix polynomial of order

K = max(m,n) with the identity matrix as the
leading coefficient, i.e.

T(g)=I+Ty¢g '+ ---+Txq ¥, (12)

Further, in (11) €(t) is the two dimensional in-
novation of z(t), a zero mean white noise with
covariance matrix A.

4. ESTIMATION METHODS
4.1 Estimating the two-dimensional ARMA model

In order to estimate the ARMA model in (11)
we adopt a well-known procedure previously used,



for example by (Mayne and Firoozan, 1982). The
idea is to first estimate the innovation process
{e()}}L, and then use it as a second input,
thus using a linear regression model to estimate
A(g") and T(g™).

In order to estimate the innovation €(t), we fit an
AR model of large order L to the data z(t), i.e.

[T+ Aig7' +-+-+ Arg~ "] 2(t) = e(t). (13)

The model order L should be sufficiently large,
in order to ensure a good approximation of the
ARMA model by the AR model. It is straightfor-
ward to show that the least squares estimate of
€(t) and A is given by

N N -1
e(t)==t)- [’X:Z(t) ZlT(t)]Lzzll(t) ZlT(t)] Zy(t)(14)
=1 =1

. 1 &
=5 2 EME @), (15)
t=1

where Zi(t) = [-2T(t-1)... 2Tt -L)] .
Next, we shall consider &(t) as an additional input
to estimate the ARMA model in (11). Note that
the order of ARMA model K = max(n,m) is
known. Let us introduce

O, = [Al LA Ty FK],
Zy(t)y=[-2"(t-1) ... 2" (t - K)
Ti-1)...¢-K)]".
Then it is straightforward to show that the least

squares estimate of @4 is given by
-1

N N
8= |} =(t)2] (t)] [Z Zz(t)zz(t)} -(16)
t=1 t=1

From O, and A we estimate ®, (w) as

$,(w) = Alw)PW)AT {~w) A {-w), (17)

where we have used the notation X(w) for
X (e~*) for convenience.

4.2 Non-parametric identification

In non-parametric identification, we determine
the estimates of the noise variances A., Ay
and G(e™*) for each frequency. From (8), since
®,,(w) is singular, equating the determinant of
®,, (w) to zero it is straightforward to derive

det [®2(w)] = [ Byy(w) Buu(w) —1] O3, (18)
03 =X Ay AT (19)

is a vector with three unknown parameters. We
can derive an overdetermined system of linear
equations in O3 by repeating this relation for a
large number of frequencies. The LS solution of
this system gives an estimate of ©3. The structure
of ©3 can be used to derive a more sophisticated

where

way to obtain @3, comprising of a nonlinear search
in one parameter.

Once the estimates :\u and :\v are obtained, we
have the estimate of ®,(w) as

d,, (W) = ®a(w) — Bs(w), VYw. (20)

A simple way to estimate G(e~™) from &, (w) is

Gley = 807 1887 (1)
A more sophisticated estimate may be derived
by using also the remaining elements of ®,,(w),
which would lead us to a two dimensional search,
treating the real and the imaginary parts of
G(e™*) as two unknowns.

4.3 Parametric identification

In this section we shall discuss two different para-
metric identification methods based on the results
discussed in the previous sections.

One way to obtain a parametric estimate of the
system transfer function is to utilize the non-
parametric transfer function estimate (21). Let us
introduce the parameter vector

6= [a1 I / 79 bl bn]T.

From (2) and (6), we have
bie ‘+ -+ bpe . (22)
1+aie™ + .-+ aze'™

One way to estimate § is to minimize the weighted
spectral distance between H(w,§) and G(e™**)
given by (21), i.e.

H(w,8) =

M
§=argmin } _ Wi|H(w,6) — G(e™**)[(23)
k=1
where {we}M, C [0,7] are user defined discrete
frequency points, and W}, is a user chosen weight
corresponding to frequency wy.

Parametric estimates of A(¢g™!), B(g~!) and
D(g™1) can also be obtained from A(g!) using
(9). Let us introduce the process v(t) and its
correlation sequence R, as

v(t)= A(gH)z(t) = T(g " e(t), (24)
K
R.=Ev(tywT(t—7) =) TiATT ,, (25)

where I = I. Note that we used (24) in de-
riving the last equality. The previously obtained
estimates of A and {T;}X, can be substituted
in (25) to compute R,. To explore how C(g71),
Aus Ay and A, are determined let us examine R,
elementwise. Combining (10), (24) and (25) it is
straightforward to derive



n—rt

RUV=AS Biair + Ag)_bibisr, 0<T <n(26)

i=0 i=1

RS—lz) = —Au Z dibi-{-‘r, 0 S T S n; (27)
i=0

RV = -2, ¥ bidipr, 0<7<m—1; (28)
i=1

where by = 0 and ag = dg = 1. Since the estimates
of A(g™"), B(g~') and D{(g!) are already known,
(26), (27) and (28) can be used for different
values of 7 < K to get an overdetermined system
of equations in A, and A,. This system can be
solved to obtain the estimates of the unknowns.
Now we can use the remaining element of R, to
estimate C(g~!). From (10), (24) and (25), it is
straightforward to derive that

m

ACg )0 (@)=Y R#Pq~™ A,D(g")D(g){29)
The polynomial at the right hand side of (29) can
be factorised to obtain C/(¢g™1). Of course as R
:\u deviate somewhat from the true values, it may
happen that the right hand side cannot be exactly
factorised. This problem is encountered precisely
when the polynomial is not positive definite.

5. NUMERICAL ILLUSTRATION

To illustrate numerically the identification meth-
ods introduced in the previous section, we shall
consider the system transfer function as follows

AlgH)=1-15¢"1+0.7¢72, (30)

B(gY)=1.0g7" +0.5¢72, (31)
Cl@hH)=1+02¢7", (32)
D(g)=1-08¢7". (33)

The process e(t) is zero mean white noise and its
variance equals unity. The number of data points
N was 1000 for each Monte-Carlo simulation. A
natural choice of the weighting vector W}, in (23)
would be

Wi = ®uguo (Wi)- (34)

Using this choice during the optimisation in (23),
the non-parametric estimate of the transfer func-
tion at a particular frequency is given a weight di-
rectly proportional to the SNR at that frequency.

In Figure 1 we have compared the mean value and
the standard deviation of non-parametric transfer
function estimates G(e~*) from 50 independent
Monte-Carlo simulations with the true transfer
function G(e~*). The SNR at both the input and
the output are 15 dB approximately. The order
L of the AR model involved in estimation of the
innovation €(t) in (13), has been taken as 10. The
order K of the ARMA model in (11) is 2. We have
used 128 equally spaced discrete frequency points
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Fig. 1. Non-parametric transfer function estimates
at 15 dB input—output SNR and L = 10. The
mean from Monte Carlo simulations (solid
line), the mean + standard deviation (dotted
line) and the true values (dashed line).

in the interval [0,7] to set up the optimisation
problem in order to obtain ©; defined in (19).
The parametric estimate of the transfer function
G(e~*“) obtained from (23) is shown in Figure 2.

The noise sensitivity of the algorithms can be
observed in Figure 3 where we have shown the
results of Monte-Carlo simulations at 20 dB input-
output SNR. The value of L is set to 10.

In Figure 4 we have shown the non-parametric
transfer function estimates when the polynomials

ClgH)=1+0.1q¢7", (35)
D(g)=1-0.2¢"" (36)

give more flat spectrum of the true input. The
system under consideration remains unchanged.
The input and output SNR are 20 dB each and L
is 10.
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Fig. 2. Parametric transfer function estimates at
15 dB input—output SNR and L = 10. The
mean from Monte Carlo simulations (solid
line), the mean + standard deviation (dotted
line) and the true values (dashed line).

True Mean Std CRB
Values | Value | Deviation

a1 -1.5 —1.49 0.007 0.0042
a2 0.7 0.69 0.005 0.0032
b1 1.0 0.95 0.177 0.0210
ba 0.5 0.57 0.151 0.0288
c1 0.2 0.23 0.071 0.0332
di —-0.8 —0.80 0.011 0.0174
Ay 0.1 0.11 0.042 0.0396
Ay 1.0 1.0 0.041 0.0070

Table 1. Parametric identification re-

sults from 500 Monte Carlo Simulations.

Input SNR = 15 dB, Output SNR = 23
dB, L = 50 and N = 2000.

Next, in Table 1 we have summarised the results
from parametric estimation scheme which is di-
rectly related to the ARMA model, mentioned in
(11) and (25)-(29). The value of L was taken as 50,
while the number of data point N is 2000 in each
simulation. The SNR at the input is 15 dB and
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Fig. 3. Non-parametric transfer function estimates
at 20 dB input and output SNR and L =
10. The mean from Monte Carlo simulations
(solid line), the mean + standard deviation
(dotted line) and the true value (dashed line).

that at output is 23 dB. The standard deviation
obtained has been compared with the Cramer-Rao
bound (Karlsson et al., 2000).

6. DISCUSSION

In Figures 1 and 3 we see that low data SNR
at a particular frequency causes degradation of
the transfer function estimate. The phase of the
estimated transfer function, in particular, is more
sensitive to noise. The estimation of § in (23) is the
only computationally intensive operation in this
algorithm, but the corresponding improvement
in the estimate of the transfer function is also
impressive as shown in Figure 2 compared with
Figure 1. It is also interesting to observe the
significant improvement in the estimation when
true input has a flat spectrum, as in Figure 4,
while the SNR of the data remains the same. The
choice of the parameter L is important. Too small
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Fig. 4. Non-parametric transfer function estimates
at 20 dB input and output SNR with input
signal having more flat spectrum and L =
10. The mean from Monte Carlo simulations
(solid line), the mean + standard deviation
(dotted line) and the true value (dashed line).

L leads to biased estimate of A(g~!), B(¢~!) and
D(q™'). On the other hand, a large choice of L
causes significantly larger computational burden.
One way to chose a reasonably good value of
L is to apply whiteness test, see for example
(Soderstrém and Stoica, 1989), on the estimated
innovation &(t).

7. CONCLUSIONS

Two parametric and one non-parametric algo-
rithm based on a frequency domain approach
for dynamic errors-in-variables system are pro-
posed. The algorithms provide reasonably good
estimates with low computational cost. The para-
metric method described by (11) and (25)-(29)
is computationally economical, because all the
operations involved with it are linear. The non-
parametric method given by (21) is also fast be-

cause of the same reason. The non-paramatric
method is sensitive to noise. Hence it is sometimes
required to modify the non-parametric estimate
using another parametric estimate given by (22).
This modification involves non-linear optimisation
and is computationally expensive.

The accuracy of the parametric method is depen-
dent upon the choice of L. The optimal choice of
L depends upon the the system characteristics.
In general, it is required to have a large L, if
the joint spectrum of the noisy input and output
data is peaky. The non-parametric method is less
sensitive to the choice of L.
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